
SWE344

Internet Protocols and Client-Server
Programming

Dr. El-Sayed El-Alfy alfy@kfupm.edu.sa

Mr. Bashir M. Ghandi bmghandi@ccse.kfupm.edu.sa

Computer Science Department
King Fahd University of Petroleum and Minerals

Module 1a: IntroductionModule 1a: Introduction

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 2

Objectives

Present an overview of the course and the class
policy
Discuss the student expectations and the shades of
the course title
Introduce .NET Framework and its relation to C#
Explore the development tools
Discuss the C# programming basics
Develop a small program in C#

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 3

Agenda

What the Course is About, Its Learning Objectives
Basics of .NET
Introduction to C#

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 4

What is this course all about?
This course explores the development of TCP/IP applications and their
associated protocols. It utilizes hands-on programming and makes use of
network monitoring tools. Several Client/Server applications are
developed using the Socket interface.
Tentative topics include
– Overview of C# and .NET Framework
– C# Programming Basics
– OOP, GUI, Delegates, Events and Threads
– TCP/IP Protocols and Client/Server Model
– IP Addressing and Domain Name System (DNS)
– Socket Programming using C# Sockets Helper Classes
– Raw Socket Programming
– Asynchronous and Multithreading C/S Programming
– Application-Layer Programming: HTTP and Web Applications, SMTP,

POP/MIME, FTP
– UDP Broadcast and Multicast
– Remoting as an example of object-oriented distributed application framework

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 5

Learning Objectives

After taking this course, you should
– Demonstrate understanding of developing C# applications

in the .NET environment.
– Recognize the basics of TCP/IP architecture and C/S

model.
– Describe and apply various socket programming concepts

and mechanisms.
– Develop client/server applications using socket interface.
– Practice software engineering principles and methods in

building network-aware applications.
– Use software development tools effectively
– Gain required skills to work in teams and present

technical work.

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 6

What is a C/S Application?

The Client-Server paradigm is the most prevalent model for distributed
computing systems
The Internet applications are based on the C/S model
A typical network application has two processes
– Client process: a program running on the local machine and requesting a

service from another program (server) usually running at a remote
computer

– Server process: a program running on the remote computer to provide a
service to the clients

Network

Request

Reply

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 7

Basics of .NET

Microsoft introduced .NET technology in June 2000
as a programming platform that simplifies
application development in the highly distributed
environment of the Internet.
Applications can be developed for MS Windows
workstations and servers in a variety of
programming languages
A new programming language is developed
specifically for the .NET platform is called C#
C# is becoming a widely used programming
language to create both network-aware and stand-
alone applications for Windows systems

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 8

Basics of .NET …
The .NET Framework Design Objectives:
– To provide a consistent object-oriented programming environment

whether object code is stored and executed locally, executed locally
but Internet-distributed, or executed remotely.

– To provide a code-execution environment that minimizes software
deployment and versioning conflicts.

– To provide a code-execution environment that guarantees safe
execution of code, including code created by an unknown or semi-
trusted third party.

– To provide a code-execution environment that eliminates the
performance problems of scripted or interpreted environments.

– To make the developer experience consistent across widely varying
types of applications, such as Windows-based applications and Web-
based applications.

– To build all communication on industry standards to ensure that code
based on the .NET Framework can integrate with any other code.

(.NET Framework SDK Documentation)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 9

Basics of .NET…

What makes the .NET programming languages
differ from previous versions of Windows
programming languages?

They differ in the way programs are created and run on the Windows systems.
(C# Network Programming)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 10

Basics of .NET…

The .NET Framework has two main components:
– Common Language Runtime (CLR)

• Central part of the framework that executes .NET programs
• Compilation process

1. Programs compiled to Microsoft Intermediate Language (MSIL)
» Defines instructions for CLR

2. MSIL code translated into machine code using Just In Time (JIT)
compiler
» Produces machine code specifically tailored for a particular

platform
» JIT compilation is only performed the first time you run the

program (unless you turn off or reboot the computer) and the
resulting machine code is automatically stored and reused

– .NET Framework Class Library (FCL)
• Pre-packaged components ready for reuse (classes, interfaces,

structs, enumerators, etc)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 11

Basics of .NET…

The relationship of CLR and FCL to your
applications and to the overall system

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 12

Basics of .NET…

How does it relate to Java?

The .NET Framework is a collection of Software development tools (similar to
JDK) that can be used to write, debug, compile and execute programs.

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 13

Key Features of .NET

Language independence and integration
– .NET programs not tied to particular language
– Applications developed in any .NET compatible language

• Visual Basic .NET, Visual C++ .NET, C# and more
– Programs may consist of several .NET-compliant languages
– Old and new components can be integrated
– Programmers can contribute to applications using the language in

which they are most competent

Includes a rich Framework Class Library (FCL)
– Pre-packaged components ready for reuse (classes, interfaces,

structs, enumerators, etc)
– Used by any .NET language
– Make application development quicker and easier
– Developers no longer need to be concerned with details of

components

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 14

Key Features of .NET …
Development of a variety of applications and services
– Console applications, Windows Forms, ASP.NET applications, XML

Web Services, etc
New program development process and execution-
management features
– Manages memory, security and other features

• Relieves programmer of many responsibilities
• More concentration on program logic
• Provides increased productivity

Software reusability
– Web services provide solutions for wide variety of companies

• Cheaper than developing one-time solutions that can’t be reused
• Single applications perform all operations for a company via various Web

services
– Manage taxes, bills, investments and more

Additional information available at Microsoft Web site
www.microsoft.com/net

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 15

Development Environments

.NET Framework SDK
– Download at http://msdn.microsoft.com/downloads

Visual Studio .NET (VS.NET)
– Microsoft’s Integrated Development Environment (IDE)

used for Rapid Application Development (RAD)
• Edit, compile, debug, run

– More productive and easy to use development tool
– Program in a variety of .NET languages
– Create different types of applications

• Console applications, windows applications, ASP.NET
applications, XML Web Services

– Tools to edit and manipulate several file types

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 16

Visual Studio .NET IDE Overview

navigation
buttons

location bar

recent
projects

buttons

hidden window

Start Page
links

(C# How To Program)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 17

Visual Studio .NET IDE Overview …

New Project dialog.

Visual C#
projects folder

project name

project location

description of
selected project

Visual C# Windows
Application (selected)

(C# How To Program)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 18

Applications

Console applications
– Applications that display only text as output in a command

window (also called console window)
– No visual components
– Only text output
– Two types of the command windows

• MS-DOS prompt
– Used in Windows 95/98/ME

• Command prompt
– Used in windows 2000/NT/XP

Windows applications
– Applications that provide graphical user interface (GUI)

with multiple types of visual controls, e.g. windows,
dialogs, buttons, menus, etc

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 19

Applications …

Visual Studio .NET-generated console application.
(C# How To Program)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 20

Applications …

Visual Studio .NET environment after a new project has been created.

tabs

menu title bat

menu bar

active tab Solution
Explorer

Properties
window

Form
(windows
application)

(C# How To Program)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 21

Applications …

ASP.NET Applications
– Programs that run over the Internet
– Accessed using a web browser e.g. IE
– Examples: online banking, stock trading, online auction

systems, etc
ASP.NET Web Services (XML Web Services)
– Are also programs that run over the Internet
– Used to offer a service that can be used in a distributed

system of interconnected services
– Example: MS Passport web service offers identification

and authentication of web users

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 22

C# Language

C# is a new language designed specifically for .NET
platform to provide an optimum blend of simplicity,
expressiveness, and performance.
Many features of C# were designed in response to
the strengths and weaknesses of other languages,
particularly Java and C++.
The C# language specification was written by
Anders Hejlsberg and Scott Wiltamuth at Microsoft

(Essential of C#, 2002)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 23

Hello World Program (v0)

1. // Hello0.cs
2. public class Hello0
3. {
4. public static void Main()
5. {
6. System.Console.WriteLine("Hello, World!");
7. }
8. }

Hello, World! Hello, World!
The System.Console

class contains a
WriteLine method that
can be used to display
a string to the console

Program execution starts at
the Main() method

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 24

Hello World Program (v1)

1. // Hello1.cs
2. using System;
3. public class Hello1
4. {
5. public static void Main()
6. {
7. Console.WriteLine("Hello, World!");
8. }
9. }

To avoid fully qualifying
classes throughout a program,
you can use the using directive

Console.WriteLine() is the same as
System.Console.WriteLine()

A namespace such as System contains several
classes and are used to avoid name conflict

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 25

Hello World Program (v2)

1. // Hello2.cs
2. using System;
3. public class Hello2
4. {
5. public static void Main(string[] argv)
6. {
7. Console.WriteLine(argv[0]);
8. }
9. }

If you need access to the
command line parameters passed

in to your application, simply
change the signature of the Main

method to include them

argv[0] will contain the first
parameter you enter after the

application name

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 26

Hello World Program (v3)

1. // Hello3.cs
2. using System;
3. public class Hello3
4. {
5. public static int Main(string[] argv)
6. {
7. Console.WriteLine("Hello, World!");
8. return 0;
9. }
10. }

The application can also return a
code value to the operating

system

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 27

Hello World Program (v3)

1. // Hello4.cs
2. using System;
3. namespace Greetings
4. {
5. public class Hello4
6. {
7. public static void Main(string[] argv)
8. {
9. Console.WriteLine("Hello, World!");
10. return 0;
11. }
12. }
13. }

You can define your namespace
and define all related classes

inside it

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 28

Anatomy of the Program

Comments
– Single line comment is preceded by //
– Multiple line comments are enclosed between /* and */
– Comments are ignored by the compiler
– Used only for human readers to improve code readability

White Space
– Includes spaces, newline characters and tabs

Guidelines for writing clear/readable code
– Use meaningful identifiers (class name, object references, variable

names, method parameters, etc)
– Use white space and statement layout to promote clarity
– Use comments intelligently
– Use symbolic constants
– Avoid large methods (use manageable components)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 29

Anatomy of the Program …

Namespaces
– The .NET framework class library (FCL) is composed of namespaces

(packages in Java)
– A namespace is a group of classes and their methods
– Allows the easy reuse of code and avoids name conflict
– Namespaces are stored in .dll files called assemblies
– When using members of a namespace

• use fully-qualified name, e.g.,
System.Console.WriteLine(“Salam Shabab”);

• include the namespace in the program with the using keyword
– To declare a namespace, use the keyword, namespace and a pair of

braces are used to enclose all members of a namespace
– If a class is not enclosed in a namespace, then it is assumed to be

part of a global namespace, which has no name

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 30

Anatomy of the Program …

Some of the most important namespaces in the CLR

Contains classes that implement basic functionalities like Console
I/O, mathematical operations, data conversions etc.

System

Contains classes used for file I/O operations. System.IO

Classes that implement HTTP protocol to access web pages. System.Web

Contains classes that are used for multithreading programming. System.Threading

Contains classes for Windows GUI applicationsSystem.Windows.Forms

Contains classes that provide basic graphics functionalities. System.Drawing

Contains classes that implement collections of objects such as
linked list, queue, hash table etc.

System.Collections

Contains classes the provides access to windows socket interfaceSystem.Net.Sockets

Contains classes that provide access to Windows network functions. System.Net

DescriptionNamespace

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 31

Anatomy of the Program …
Class declaration
– As in Java, a class is declared using the class keyword, and all members of a

class must be enclosed inline within a pair of braces
The Main() method
– is the entry point of a C# application where program execution begins
– Like in Java, it must be static, however, in C# it has three different signatures

as follows:
public static void Main()
public static void Main(string[] args)
public static int Main(string[] args)

Console I/O
– The Console class of the System namespace has a number of static methods

that enable a console application
• to display strings and other types of data to the command window, e.g.

– WriteLine() and Write() methods to print a single line of text
– These two methods are overloaded to take different and variable parameters

• For reading
– ReadLine() and Read() methods

public static int Read();// reads a character
public static string ReadLine(); //reads a line as a string

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 32

Identifiers

Identifiers are names programmers choose for their types,
methods, variables, and so on.
Naming conventions
– An identifier must be a whole word
– Can contain letters, digits, and underscores (_)
– Can not start with digits
– C# identifiers are case-sensitive
– Must not conflict with a keyword (to ensure this start with @ symbol

but not considered as part of the name)
– Use mixed case when an identifier involves more than one word, e.g.

WriteLine.
– Names of variables start with small letters
– Names of Namepaces, Classes, Interfaces, Structs, Enums,

Properties and Methods start with capital letters
– The Main method must start with a capital letter

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 33

Variables
A variable represents a typed storage location
A variable can be a local variable, a parameter, an array
element, an instance field, or a static field.
Every variable has an associated type, which essentially
defines
– the possible values the variable can have and
– the operations that can be performed on that variable

C# is a strongly typed language
– Any variable must be declared to be of certain type, e.g.
double score;

C# is type-safe
Variables must be assigned a value before they are used.
– either explicitly assigned a value or
– automatically assigned a default value (occurs for static fields, class

instance fields, and array elements not explicitly assigned a value)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 34

Value Types and Reference Types
As in Java, variables in C# are of two types, namely, value
types (primitive types) and reference types.
A third type called pointers can be used in unmanaged code
Value types
– C# has more value types than Java
– Contains an actual value of the specified type
– Programmer created

• structs
• enumerations

Reference types
– Contain an address of an object
– Programmer create

• Classes
• Interfaces
• Delegates

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 35

Value Types

Possible ValuesBytes
Occupied

Signed?.Net Framework
(System) type

Type

-128 to 1271YesSystem.Sbytesbyte

-32768 to 327672YesSystem.Int16short

-2147483648 to 21474836474YesSystem.Int32int

-9223372036854775808 to 92233720368547758078YesSystem.Int64long

0 to 2551NoSystem.Bytebyte

0 to 655352NoSystem.Uint16ushort

0 to 42949672954NoSystem.UInt32uint

0 to 184467440737095516158NoSystem.Uint64ulong

Approximately ±1.5 x 10-45 to ±3.4 x 1038 with 7
significant figures

4YesSystem.Singlefloat

Approximately ±5.0 x 10-324 to ±1.7 x 10308 with 15 or 16
significant figures

8YesSystem.Doubledouble

Approximately ±1.0 x 10-28 to ±7.9 x 1028 with 28 or 29
significant figures

12YesSystem.Decimaldecimal

Any Unicode character (16 bit)2N/ASystem.Charchar

true or false1 / 2N/ASystem.Booleanbool

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 36

Symbolic Constants

A constant declaration is like a variable declaration,
except that the value of the variable can't be
changed after it has been declared, e.g.
const double PI = 3.14;

const double speedOfLight = 2.99792458E08;

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 37

Example
1. class Addition {
2. static void Main(string[] args) {
3. string firstNumber, // first string entered by user
4. secondNumber; // second string entered by user
5.
6. int number1, // first number to add
7. number2, // second number to add
8. sum; // sum of number1 and number2
9.
10. // prompt for and read first number from user as string
11. Console.Write("Please enter the first integer: ");
12. firstNumber = Console.ReadLine();
13.
14. // read second number from user as string
15. Console.Write("enter the second integer: ");
16. secondNumber = Console.ReadLine();
17.
18. // convert numbers from type string to type int
19. number1 = Int32.Parse(firstNumber);
20. number2 = Int32.Parse(secondNumber);
21.
22. // add numbers
23. sum = number1 + number2;
24.
25. // display results
26. Console.WriteLine("sum is {0}.", sum);
27.
28. } // end method Main
29. } // end class Addition

Please enter the first integer: 45
Please enter the second integer: 72
The sum is 117.

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 38

Strings
A string is an object that contains a sequence of Unicode characters
String literals are written between double quotations, e.g., “Welcome”
A string reference is declared using String or string, string
greetings=“Welcome!”;
You can concatenate two strings using +
string greetings = “Welcome ” + “from C#!”;
You can display a string using
System.Console.WriteLine(greetings);
System.Console.WriteLine(“x= ” + 2);
To get the length of a string use the Length property, e.g.
greetings.Length
Immutable strings (objects of string class type) can't be modified after
creation
Mutable strings (also called dynamic strings) are objects of type
StringBuilder and can be modified -- (similar to StringBuffer in Java)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 39

Manipulating Strings
C# offers a wide range of string-handling features
Testing equality of two strings (duplicate strings are
removed; string interning)
string a = "hello"; string b = "hello";
Console.WriteLine(a == b); // True for String only
Console.WriteLine(a.Equals(b)); // True for all
objects

Console.WriteLine(Object.ReferenceEquals(a, b)); //
True!!

Indexing strings – the characters in a string are accessed
with a zero-based index
string s = "Going down?";
for (int i=0; i<s.Length; i++)
Console.WriteLine(s[i]); // Prints s vertically

Copying strings
string s2 = s1;
string s2 = string.Copy(s1);

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 40

Manipulating Strings …

Deletes a specified number of characters from this instance beginning at a specified
position.

String Remove(int index, int
count)

Overloaded. Left-aligns the characters in this string, padding on the right with spaces or
a specified Unicode character, for a specified total length.

String PadRight(int)
String PadRight(int, char)

Overloaded. Right-aligns the characters in this instance, padding on the left with spaces
or a specified Unicode character for a specified total length.

String PadLeft(int)
String PadLeft(int, char)

Overloaded. Reports the index position of the last occurrence of a specified Unicode
character or String within this instance.

int LastIndexOf(char)
int LastIndexOf(string)

Inserts a specified string at a specified index of this string. Returns the updated string.String Insert(int, string)

Overloaded. Reports the index of the first occurrence of a String, or one or more
characters, within this instance.

int IndexOf(char)
int IndexOf(string)

Retrieves an object that can iterate through the individual characters in this instance.CharEnumerator
GetEnumerator()

Overloaded. Overridden. Determines whether two String objects have the same value.bool Equals(object)

Determines if the end of this instance matches the specified String.bool EndsWith(string)

Creates a new instance of String with the same value as a specified String.static string Copy(string)

Overloaded. Compares this instance with a specified object.int CompareTo(string)

Overloaded. Compares two specified String objects.static int Compare(s1, s2)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 41

Manipulating Strings …

Removes all occurrences of a set of characters specified in a Unicode character array
from the beginning of this instance.

String TrimStart(char[])

Removes all occurrences of a set of characters specified in a Unicode character array
from the end of this instance.

String TrimEnd(char[])

Overloaded. Removes all occurrences of a set of specified characters from the
beginning and end of this instance.

String Trim()
String Trim(char[])

Overloaded. Returns a copy of this String in uppercase.String ToUpper()

Overloaded. Overridden. Converts the value of this instance to a String.String ToString()

Overloaded. Returns a copy of this String in lowercase.String ToLower()

Overloaded. Copies the characters in this instance to a Unicode character array.char[] ToCharArray()

Overloaded. Retrieves a substring from this instance.String Substring(int start)
String Substring(int start, int
count)

Determines whether the beginning of this instance matches the specified String.bool StartsWith(string)

Overloaded. Identifies the substrings in this instance that are delimited by one or
more characters specified in an array, then places the substrings into a String array.

String[] Split(char[])

Overloaded. Replaces all occurrences of a specified Unicode character or String in
this instance, with another specified Unicode character or String.

String Replace(char, char)
String Replace(string, string)

KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005 42

Example

1. using System;
2. public class FilenameProcessor {
3. public static void Main(String[] args) {
4. String fullName = "d:/workarea/lab02/MoveRec.java";
5. char separator = '/';
6. int dotPosition = fullName.IndexOf('.');
7. int lastSlashPos = fullName.LastIndexOf(separator);
8. Console.WriteLine("The full name is: "+fullName);
9. String path = fullName.Substring(0, lastSlashPos);
10. Console.WriteLine("The path is : "+path);
11. String fileName = fullName.Substring(lastSlashPos+1,
12. dotPosition-lastSlashPos-1);
13. Console.WriteLine("The file name is : "+fileName);
14. String fileExtension =
15. fullName.Substring(dotPosition+1);
16. Console.WriteLine("The extension: "+fileExtension);
17. }
18. }

