Lecture 17:  Remoting I 
Objectives:

· Learn the basics of remoting

· Learn the elements required to create a remoting application.

1.

Remoting Basics
1.1  What is Remoting?
Remoting is the ability to call a method of an object that is on a different application domain as if it were in the current application domain.  
The two application domains can be on the same computer on different computers in a network.

1.2  Types of Remoting
There are two ways an object in one application domain can be made available to another application domain.

The first option involves serializing the object, transport it to the other domain using streams.  The object is then de-serialized and used at the other side.  This version is called Marshall by value (MBV).
MBV should be considered only if the object does not depend on any data in its original domain.
The second type of remoting is called Marshall by reference (MBR). 

In this case, the client communicates with the remotable object through a proxy, but the object remains in its application domain.  

To the client, the proxy appears as if it is the actual object.  However, for each call made to the proxy, the proxy passes the call to the remote object using a communication channel, obtain a result from the remote object and pass same to the client.

The following figure shows the set-up for MBR.

[image: image1.png]Client

Server

Client
Application

methad call

Proxy class

Server
Application

C

Gommunication Channel





2.

Creating an MBR Remoting application.

To create an MBR remoting application, the following elements are required.

· A remotable class

· A remoting server

· A remoting client

2.1  Remotable class
This is a class whose methods can be accessed from another application domain.  To construct such a class, all you need to do is to extend the MashalByRefObject class, which is in the System namespace.   
The following is an example of a remotable class.

	using System;

public class MathClass:MarshalByRefObject {


public double Add(double a, double b) {



return a + b;


}


public double Subtract(double a, double b) {



return a - b;


}



public double Multiply(double a, double b) {



return a * b;


}


public double Divide(double a, double b) {



if (b == 0)




return 0;



else




return a/b;


}

}


Note that you need to compile this class into a DLL.  

2.2  Remoting Server
This is an application that a client connects to in order to gain access to the method of the remotable class.   Such an application must do three things as follows:
a. Create a communication channel:  This can be done with either the TcpChannel class of System.Runtime.Remoting.Channels.Tcp namespace, or using the 
HttpChannel class of System.Runtime.Remoting.Channels.Http namespace.
b. Register the communication channel created in (a) with the remoting channel services.  This is done by passing the channel to the static method, RegisterChannel, of the ChannelServices class, which is in the System.Runtime.Remoting.Channels namespace.
c. Register the remotable class with the remoting server.  This is done by using the static method, RegisterWellKnownServiceType of   the RemotingConfiguration class, of the System.Runtime.Remoting namespace.  
This method takes three arguments: 
· The type of the remotable class
· A URI identifier for the class, and 
· Object creation mode.  
Possible modes are: SingleCall and Singleton, both of which are fields of the WellKnownObjectMode class.  
· SingleCall means a separate instance of the remotable class will be created for each call to the remotable class.  
· Singleton mode means, a single instance will be used for different calls for all clients.  Singleton is useful if you wish to retain the state across different calls. 

The following example creates a remoting server for our MathClass:

	using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

public class MathServer {


public static void Main() {



HttpChannel channel = new HttpChannel(9095);



ChannelServices.RegisterChannel(channel);



RemotingConfiguration.RegisterWellKnownServiceType(



         typeof(MathClass),  //type of Remotable class

                     "MyMathServer",     //URI



         WellKnownObjectMode.SingleCall); //Mode



Console.WriteLine("Press <enter> to exit...");



Console.ReadLine();


}

}


Note here that you need to store the MathClass.dll in the same folder as the MathServer.exe 

2.3  Remoting Client
This is the application that is used to access the methods of the remotable class through the remoting server.  
Here again, there are three things that the client class must do to communicate with the remotable class:
a. Create a channel.  This must be of the same type as that of the remoting server.
b. Register the communication channel created in (a) with the remoting channel services.
c. Creating an instance of the proxy class.  The proxy class is like an alias to the remotable class, so all calls to the remotable class are made through the proxy class.    Here we have two options:
i. We use the RegisterWellKnownClientType of the RemotingConfiguration class.  This takes the type of the remote class and its URI as arguments.    Example:

RemotingConfiguration.RegisterWellKnownClientType(



               typeof(MathClass),  //type of Remotable class

                     "http://localhost:9095/MyMathServer");   //server URI

            
MathClass math = new MathClass();
ii. Alternatively, we can use the getObject method of the Activator class, which is in the System namespace.  Example:




   MathClass math = (MathClass) Activator.GetObject(

typeof(MathClass), "http://localhost:9095/MyMathServer");

Note that in both options (i) and (ii), we need the type of the MathClass for the statements to compile.  
If we have the same MathClass.dll at the client side, this will work.  But then why do we need the remotable class if we have it locally at the client side?   
Well, the MathClass.dll at the client side does not need to have all the implementation details, just the meta data.   
In fact we can use a utility called soapsuds that comes with .NET SDK to generate such a dll from the remote server using the following command:

soapsuds –url:http://localhost:9095/MyMathServer?wsdl –oa:MathClass.dll -nowp

Alternatively, when designing the MathClass, you can first create an interface containing the methods you wish to make remotable, then write the Math class to implement the interface.  
In this case, you provide the client with the interface, which he can then use to create the proxy class.

In the following example, the soapsuds utility is used to generate the MathClass.dll file at the client side and then option (i) is used. 
	using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

public class MathClient {


public static void Main(string[] args) {



HttpChannel channel = new HttpChannel();



ChannelServices.RegisterChannel(channel);



RemotingConfiguration.RegisterWellKnownClientType (



   typeof (MathClass),            // Remotable class



   "http://localhost:9095/MyMathServer" // URL of remotable class



);

      



MathClass math = new MathClass();



if (math == null)




Console.WriteLine("Could not locate Server");



else 
{




int a = 10; int b = 5;




Console.WriteLine("{0} + {1} = {2}", a, b, math.Add(a, b));




Console.WriteLine("{0} - {1} = {2}", a, b, math.Subtract(a, b));




Console.WriteLine("{0} * {1} = {2}", a, b, math.Multiply(a, b));




Console.WriteLine("{0} / {1} = {2}", a, b, math.Divide(a, b));




Console.ReadLine();



}


}

}


































































































































































































































































































