INFORMATION & COMPUTER SCIENCE DEPARTMENT, KFUPM

SWE344: Internet Protocols & Client-Server Programming

LAB #12: Broadcasting and Multicasting

Objectives:

To gain experience with:

· Broadcasting
· Multicasting
1.
Overview of Broadcasting

IP broadcasting is used by network devices to send a single packet of information to every device on a network. [one-to-all]

This requires the use of UDP since TCP requires connections between communicating devices.

IP address consisting of all ones, or 255.255.255.255 is designated for broadcasting. In C#, we can get this IP as an IPAddress object using the Broadcast property of the IPAddress class.

We can also get a local broadcast address for a given subnet by assigning all ones to the host component of the IP address. For example, for a class B network: 192.168.0.0, using the subnet mask of 255.255.0.0, the local broadcast address is 192.168.255.255.

Implementing Broadcasting Systems in C#

By default, sockets are not allowed to send broadcast messages – doing so will cause a Socket Exception to be thrown.

To send broadcast packets, the broadcast socket option must be set on the socket using the SetSocketOption method as shown below:

Socket socket = new Socket(AddressFamily.InterNetwork,

 SocketType.Dgram, ProtocolType.Udp);

socket.SetSocketOption(SocketOptionLevel.Socket,

 SocketOptionName.Broadcast, 1); //1 indicates true

After the socket option is set, you specify broadcast address and port number to use for the broadcast as shown below:

IPEndPoint endPoint=new IPEndPoint(IPAddress.Broadcast, 9090);

byte[] data = Encoding.ASCII.GetBytes(“test message”);

socket.Send(data, endPoint);

Example 1: The following is a complete example showing how to send broadcast messages:

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

public class SimpleBroadcastSender

{

 public static void Main()

 {

Socket sock = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp);

sock.SetSocketOption(SocketOptionLevel.Socket, SocketOptionName.Broadcast, 1);

IPEndPoint endPoint = new IPEndPoint(IPAddress.Broadcast, 9090);

String message;

while (true) {

Console.Write("Enter message to broadcast: ");

message = Console.ReadLine();

if (message=="")

break;

byte[] data = Encoding.ASCII.GetBytes(message);

sock.SendTo(data, endPoint);

}

sock.Close();

 }

}

No special socket options are required to receive broadcast packets. The only requirement is that the application should be listening to the port through which the broadcast packets are being sent.

The following example can be used to receive broadcast messages sent by the SimpleBrodcastSender example shown above.

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

public class SimpleBroadcastReceiver

{

 public static void Main()

 {

 Socket sock = new Socket(AddressFamily.InterNetwork,

 SocketType.Dgram, ProtocolType.Udp);

 IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 9090);

 sock.Bind(localEP);

 EndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0);

 Console.WriteLine("Ready to receive...");

 byte[] data;

 int size;

 string message;

 while (true) {

 data = new byte[1024];

 size = sock.ReceiveFrom(data, ref remoteEP);

 message = Encoding.ASCII.GetString(data, 0, size);

 Console.WriteLine("received: {0} from: {1}",

 message, remoteEP.ToString());

 }

 }

}

Example 2: Broadcast Chat System:

In lab06, we developed a chat system using UDP, where clients send their messages to a server, which then broadcast the message to all known clients.

There were a number of problems with that system:

· The client must send a message to the server before it can be recognized as a known client.

· The same message is repeatedly sent individually to each client – thus, wasting bandwidth.

· For each message sent, the server has to search its database to check if the client is known – can be an expensive process as the number of clients increase.

The following example shows a broadcast chat system that does not have the above problems.

In this system, no server is required at all and no need to maintain list of clients. Instead, the system sends packets to the broadcast address.

It also listens for messages on the port being used for the broadcast so that it can both send and receive broadcast messages.

	using System;

using System.Windows.Forms;

using System.Net;

using System.Net.Sockets;

using System.Text;

using System.Threading;

using System.ComponentModel;

public class BroadcastChatSystem : System.Windows.Forms.Form {

private System.Windows.Forms.Label label3;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.GroupBox groupBox2;

private System.Windows.Forms.TextBox inBox;

private System.Windows.Forms.TextBox portBox;

private System.Windows.Forms.TextBox outBox;

private System.Windows.Forms.Button sendBt;

private System.Windows.Forms.GroupBox groupBox;

private System.Windows.Forms.TextBox nameBox;

private Socket sendSocket, receiveSocket;

private EndPoint remoteEP, localEP, broadcastEP;

private Thread receiveHandler;

public BroadcastChatSystem ()

{

InitializeComponent();

remoteEP = new IPEndPoint(IPAddress.Any, 0);

localEP = new IPEndPoint(IPAddress.Any,

 int.Parse(portBox.Text));

receiveSocket = new Socket(AddressFamily.InterNetwork,

 SocketType.Dgram, ProtocolType.Udp);

receiveSocket.Bind(localEP);

broadcastEP = new IPEndPoint(IPAddress.Broadcast,

 int.Parse(portBox.Text));

sendSocket = new Socket(AddressFamily.InterNetwork,

 SocketType.Dgram, ProtocolType.Udp);

sendSocket.SetSocketOption(SocketOptionLevel.Socket,

 SocketOptionName.Broadcast, 1);

receiveHandler = new Thread(new ThreadStart(ReceiveData));

receiveHandler.IsBackground = true;

receiveHandler.Start();

}

void InitializeComponent() {

//deleted

}

void OnSend(object sender, System.EventArgs e)
{

byte[] data = Encoding.ASCII.GetBytes(nameBox.Text+

 ": "+outBox.Text);

sendSocket.SendTo(data, data.Length, SocketFlags.None,

 broadcastEP);

outBox.Text = "";

}

void ReceiveData() {

while (true) {

byte[] data = new byte[2048];

int recv = receiveSocket.ReceiveFrom(data, SocketFlags.None,

 ref remoteEP);

inBox.Text += Encoding.ASCII.GetString(data, 0, recv)+"";

}

}

 protected override void OnClosing (CancelEventArgs e) {

 base.OnClosing (e);

receiveHandler.Abort();

 sendSocket.Close();

receiveSocket.Close();

 }

public static void Main() {

Application.Run(new BroadcastChatSystem ());

}

}

Notice that because this application binds its local end point to a particular port number, we cannot run two instances of it on the same machine. Thus, to test it, we need to run it on two different machines.

Alternatively, we can run it together with the SimpleBroadcastSender example on the same machine to test.
2.
Overview of Multicasting

Broadcasting is an excellent way to send information to all devices on a subnet. However, it has one serious drawback: The broadcast packets are restricted to the local subnet. Multicasting was designed to address this drawback.

Multicasting allows application programs to send a single packet to a select subset of devices called a multicast group, which can span across network boundaries.
Multicast group is a dynamic. That is, members can join and leave the group at any time.

Each multicast group is identified by a single special IP address discussed below. A packet sent with the particular IP address as the destination address will be received by each member of the group.

2.1
Multicast IP Addresses

The class D IP addresses in the range: 224.0.0.0 through 239.255.255.255 are used to represent multicast groups.

However, some of these addresses are reserved for special purposes as discussed below:

Local Control Block:

Addresses in the range: 224.0.0.0 through 224.0.0.255 are reserved for used by network protocols on a local network.

For example, 224.0.0.1 represents all systems on this subnet. 224.0.0.2 represents all routers on this subnet.

Global Scope:

Addresses in the range: 224.0.1.0 through 238.255.255.255 are called globally scoped addresses. That is, they can be used to multicast data across the Internet.

Limited Scope:

Addresses in the range 239.0.0.0 through 239.255.255.255 are called limited scope addresses.

Routers are normally configured to prevent multicast traffic with these addresses from crossing over the local network.

More detailed information about multicast addresses can be found at: http://www.iana.org/assignments/multicast-addresses
2.2
Internet Group Management Protocol (IGMP)

IGMP is used to dynamically register individual hosts in a multicast group on a particular LAN.

There are two versions of the protocol as discussed below:

IGMP Version 1 (RFC 1112)

The following figure shows the format of IGMP version 1 packet.

[image: image1.png]0

4

15

31

Version

Type

Unused

Checksum

Group Address

In Version 1, there are just two different types of IGMP messages:

· Membership query

· Membership report

Hosts send IGMP membership report message corresponding to a particular multicast group to indicate that they are interested in joining that group.

Membership query message is sent by routers periodically to verify that at least one host on the subnet is still interested in receiving traffic directed to a particular multicast group.

When there is no reply to three consecutive IGMP membership queries, the router times-out the group and stops forwarding traffic directed towards that group.

IGMP Version 2 (RFC 2236)

The following figure shows the format of IGMP version 2 packet.

[image: image2.png]7

15

31

Type

Max. response
time

Checksum

Group Address

In Version 2, there are four types of IGMP messages:

· Membership query

· Version 1 membership report

· Version 2 membership report

· Leave group

IGMP Version 2 works basically the same as Version 1. The main difference is that there is a leave group message.

The hosts now can communicate to the local multicast router to indicate their intention to leave the group.

The router then sends a group-specific query to determine whether there are any remaining hosts interested in receiving the traffic.

If there are no replies, the router times-out the group and stops forwarding the traffic. This can greatly reduce the leave latency compared to IGMP Version 1.

2.3
C# Support for Multicast

The .NET network library supports IP multicasting by using Socket options.

There are two socket options that are used to join and to leave a multicast group respectively.

These options are defined by IP-level Socket options names, AddMembership and DropMembership.

The value for each of these options is an instance of the MulticastOption class. This class has two constructors as follows:

	MulticastOption(IPAddress)
	IPAddress specifies the multicast group address.

	MulticastOption(IPAddress,

IPAddress)
	Used for machines with multiple interfaces. The 2nd address specifies the interface to be affected by the socket option.

Example 3(a): The following example shows a simple multicast receiver application:

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

public class SimpleMulticastReceiver

{

public static void Main()

{

Socket sock = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp);

Console.WriteLine("Ready to receive...");

IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 9090);

sock.Bind(localEP);

sock.SetSocketOption(SocketOptionLevel.IP, SocketOptionName.AddMembership,

 new MulticastOption(IPAddress.Parse("224.100.0.1")));

EndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0);

byte[] data;

string message;

while (true) {

data = new byte[1024];

int recv = sock.ReceiveFrom(data, ref remoteEP);

message = Encoding.ASCII.GetString(data, 0, recv);

Console.WriteLine("received: {0} from: {1}", message, remoteEP.ToString());

}

}

}

Notes: The following ere important points to note about multicast sockets:

· The SetSocketOption method must be called after the call to Bind method. This enables the multicast group to be set for a specific IPEndPoint.

· Once the socket has been added to a specific multicast group, the ReceiveFrom method will accept packets destined for each of the following:

· The IPEndPoint specified in the call to the Bind method.

· The multicast group IP address specified in the MulticastOption constructor

· Broadcast packets for the specified IPEndPoint.

Thus, applications are not guaranteed to receive packets destined just for the multicast group and there is no easy way of distinguishing these packets.

Sending Multicast Packets to local subnet:

Nothing special must be done to send packets to members of a multicast group in the current subnet; just specify the multicast group IP address as the destination address as the following example shows.

Example 3 (b)

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

public class SimpleMulticastSender {

 public static void Main() {

Socket sock = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp);

IPEndPoint endPoint = new IPEndPoint(IPAddress.Parse("224.100.0.1"), 9090);

String message;

while (true) {

Console.Write("Enter message to Multicast: ");

message = Console.ReadLine();

if (message=="")

break;

byte[] data = Encoding.ASCII.GetBytes(message);

sock.SendTo(data, endPoint);

}

sock.Close();

 }

}

Sending Multicast Packets outside local subnet:

By default, multicast packets sent by the socket class have a TTL value of one, meaning they cannot be forwarded by the router to another network.

To send multicast packets that can traverse multiple routers, the socket has to:

· Join the multicast group

· Increase the TTL value.

Increasing the TTL value is again done using the SetSocketOption() method.

The required socket option is IP-level is named, MulticastTimeToLive. The value is a positive integer.

As with receiving multicast sockets, the socket must be bound to a local end point before setting the socket option.

Example 3(c): The following example modifies the SimpleMulticast sender to allow for sending packets across networks.

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

public class BetterMulticastSender {

 public static void Main() {

Socket sock = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp);

IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 0);

sock.Bind(localEP);

sock.SetSocketOption(SocketOptionLevel.IP, SocketOptionName.AddMembership,

 new MulticastOption(IPAddress.Parse("224.100.0.1")));

sock.SetSocketOption(SocketOptionLevel.IP, SocketOptionName.MulticastTimeToLive, 50);

IPEndPoint multicastEP = new IPEndPoint(IPAddress.Parse("224.100.0.1"), 9090);

String message;

while (true) {

Console.Write("Enter message to Multicast: ");

message = Console.ReadLine();

if (message=="")

break;

byte[] data = Encoding.ASCII.GetBytes(message);

sock.SendTo(data, multicastEP);

}

sock.Close();

 }

}

Multicasting using the UdpClient class:

The UdpClient class supports multicasting by providing the following methods:

	JoinMulticastGroup(IPAddress mip)
	Join a multicast group with mip as the group address and default TLL value of 1

	JoinMulticastGroup(IPAddress mip, int ttl)
	Same as above but allows you to provide a TTL value.

	DropMulticastGroup(IPAddress)
	Removes the socket from the multicast group with IPAddress

Example 4: The following examples show how to use the UdpClient class to create both a multicast receiver and sender.

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

class UdpClientMulticastReceiver {

public static void Main()
{

UdpClient sock = new UdpClient(9050);

Console.WriteLine("Ready to receive...");

sock.JoinMulticastGroup(IPAddress.Parse("224.100.0.1"), 50);

IPEndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0);

byte[] data;

string message;

while (true) {

data = sock.Receive(ref remoteEP);

message = Encoding.ASCII.GetString(data, 0, data.Length);

Console.WriteLine("received: {0} from: {1}", message, remoteEP.ToString());

}

}

}

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

class UdpClientMulticastSender {

public static void Main()
{

UdpClient sock = new UdpClient(9090);

IPEndPoint remoteEP = new IPEndPoint(IPAddress.Parse("224.100.0.1"), 9090);

byte[] data;

string message;

while (true) {

Console.Write("Enter Message to Multicast: ");

message = Console.ReadLine();

if (message == "")

break;

data = Encoding.ASCII.GetBytes(message);

sock.Send(data, data.Length, remoteEP);

}

sock.Close();

}

}

Note that the UdpClientMulticastSender above can only send to a group within the local subnet. To send to a group outside, the socket has to effectively join the group and increase the TTL value.

3.
Tasks:

1. Study the Picture Viewer example and use it to implement a multi-client picture viewer system using Multicasting.

The server (or sender) has a number of pictures in a sub-folder, images. It should have an interface similar to the following. When any of the buttons is clicked, the next picture is displayed and also multicast to all members of the multicast group. You must use the multicast address: 224.100.0.5, on Port: 9095
[image: image3.png]Previous

The client is read-only (display-only) and it has the following interface. It runs in an infinite loop, receiving pictures and displaying them on the screen.

[image: image4.png]

Hint:

1.
Since UDP is unreliable, we cannot use length as used in TCP to determine the end of transmission of an image - some of the packets might get lost in transmission.

A solution is to send a special “end of image marker” (example: “end”) at the end of sending each image.
At the client side, for each byte array received, the first x bytes of the array is converted to string and compared with the end of image marker (where x is the number of characters in the marker, 3 in the above example).

2.
In the ImageViewer example, we used the following constructor of the BitMap class to create an image: BitMap(string filename).

In this case, since the client will be receiving the image from a server, it will be inefficient to save the received image into a file and then use the above constructor.
Instead, it is better to store the received image into a MemoryStream instance and then use the following constructor to create the BitMap object: BitMap(Stream s).
MemoryStream is another subclass of the Stream class that behaves exactly like a FileStream except that it stores its data in the memory instead of disk.

3.
Once an image file or stream is used to create a BitMap object, then that file or stream will be locked (i.e. cannot be written to). So how then do we read the next image from server while the current one is on display?

To solve this problem we need two MemoryStream instances, readStream for reading the image from server and displayStream for displaying the image.
Once we finish reading one image, If there is an image already on display, we dispose it, assign the readStream to displayStream and display the new image. We then re-create the readStream instance and use it to read the next image.

4.
Finally, what happens if some of the data got lost during transmission? In this case the system may or may not be able to construct the BitMap object.
Therefore we should call the constructor of the BitMap object in a try-catch block. When an image cannot be displayed because it is too much corrupted, we display an alternative locally stored image in the catch block.

PAGE
11

