INFORMATION & COMPUTER SCIENCE DEPARTMENT, KFUPM

SWE344: Internet Protocols & Client-Server Programming

LAB #06: UDP Client-Server Application

Objectives:

To gain experience with:

· Creating UDP Client-Server applications using the UdpClient class.
· Creating UDP Client-Server applications using the Socket class
1. Creating UDP applications using the UdpClient class

The UdpClient class:

UdpClient class is designed to simplify the process of creating UDP applications.

Since UDP is connectionless oriented, there is no listener component. Both server and client applications are created using the UdpClient class.

Constructor & Methods:

	UdpClient()
	Bound the new instance to any local IP and any local port

	UdpClient(int port)
	Bounds the new instance to a specific local port

	UdpClient(IPEndPoint localEP)
	Bounds the new instance to a specific local IP endpoint

	UdpClient(string host, int port)
	Bounds the new instance to any local endpoint and associate it with a default remote host and default remote port.

	void Connect(IPEndPoint remoteEP)

void Connect(IPAddress ip, int port)

void Connect(String host, int port)
	Establishes a default remote host and default remote port.

	public byte[] Receive(ref IPEndPoint remoteEP)
	Returns a UDP datagram sent by a remote host.

	int Send(byte[] data, int size)

int Send(byte[] data, int size,

 IPEndPoint remoteEP)

int Send(byte[] data, int size, string host, int port)
	Sends a datagram to the client. The first version assumes a default remote end-point has been established.

	void Close()
	Closes the UDP connection.

Notes about the Receive method:

The Receive method uses the ref modifier to capture the IPEndPoint of the remote client.

The local client has to first create a dummy IPEndPoint and then use it to call the Receive method.

The Receive method will then replace this dummy IPEndPoint object with that of the remote client:

Example 1: A simple Server & Client using the UdpClient class:
	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

class SimpleUdpServer

{

 public static void Main()

 {

 IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 9050);

 UdpClient server = new UdpClient(localEP);

 Console.WriteLine("Waiting for a client...");

 //dummy IP

 IPEndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0);

 byte[] data;

 while(true)

 {

 data = server.Receive(ref remoteEP);

Console.Write("Received from {0}: ", remoteEP.ToString());

 Console.WriteLine(Encoding.ASCII.GetString(data, 0, data.Length));

 server.Send(data, data.Length, remoteEP);

 }

 }

}

The Client
	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

class SimpleUdpClient {

 public static void Main() {

 UdpClient client = new UdpClient("127.0.0.1", 9050);

 IPEndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0);

 byte[] data;

 string input;

 while(true)

 {

 Console.Write("Enter message for server or exit to stop: ");

 input = Console.ReadLine();

 if (input == "exit")

 break;

 client.Send(Encoding.ASCII.GetBytes(input), input.Length);

 data = client.Receive(ref remoteEP);

 Console.Write("Echo Received from {0}: ", remoteEP.ToString());

 Console.WriteLine(Encoding.ASCII.GetString(data, 0, data.Length));

 }

 Console.WriteLine("Stopping client");

 client.Close();

 }

}

Note the following points arising from the connection-less nature of UDP:

· There is no AcceptClient method tha returns the client’s socket.

· NetworkStream, StreamReader and StreamWriter cannot be used for exchange of messages.

· The server can receive from any number of clients at the same time.

2.
 Creating UDP applications using the Socket class:

Because UDP is connectionless, only two things need to be specified to create a server application using the Socket class, namely:

· Create a Socket object

· Bind the socket to a local IPEndPoint

(No need for Listen and Accept methods)

However, since there is no connection, the Send and Receive methods of the socket class cannot normally be used. Instead, the SendTo and ReceiveFrom methods are used. The formats of these two methods are shown below:

	int SendTo(byte[] data, EndPoint remote);

int SendTo(byte[] data, SocketFlags flag, EndPoint remote);

int SendTo(byte[] data, int size, SocketFlags flag, EndPoint remote);

int SendTo(byte[] data, int offset, int size, SocketFlags flag, EndPoint remote);

	int ReceiveFrom(byte[] data, ref EndPoint remote);

int ReceiveFrom(byte[] data, SocketFlags flag, ref EndPoint remote);

int ReceiveFrom(byte[] data, int size, SocketFlags flag, ref EndPoint remote);

int ReceiveFrom(byte[] data, int offset, int size, SocketFlags flag, ref EndPoint remote);

Example 2: A simple Server & Client using the Socket class:
	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

class UdpSocketServer

{

public static void Main()

{

IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 9050);

Socket server = new Socket(AddressFamily.InterNetwork,

 SocketType.Dgram, ProtocolType.Udp);

server.Bind(localEP);

Console.WriteLine("Waiting for a client...");

//dummy end-point

EndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0);

int recv;

byte[] data;

while(true)

{

data = new byte[1024];

recv = server.ReceiveFrom(data, ref remoteEP);

Console.Write("Received from {0}: ", remoteEP.ToString());

Console.WriteLine(Encoding.ASCII.GetString(data, 0, recv));

server.SendTo(data, recv, SocketFlags.None, remoteEP);

}

}

}

The Client:
	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

class SimpleUdpClient

{

public static void Main()

{

Socket client = new Socket(AddressFamily.InterNetwork,

SocketType.Dgram, ProtocolType.Udp);

EndPoint remoteEP = new IPEndPoint(IPAddress.Parse("127.0.0.1"), 9050);

//Note -- need to use EndPoint for the ReceiveFrom to work!

byte[] data;

string input;

int recv;

while(true)

{

Console.Write("Enter message for server or exit to stop: ");

input = Console.ReadLine();

if (input == "exit")

break;

client.SendTo(Encoding.ASCII.GetBytes(input), remoteEP);

data = new byte[1024];

recv = client.ReceiveFrom(data, ref remoteEP);

Console.Write("Echo from from {0}: ", remoteEP.ToString());

Console.WriteLine(Encoding.ASCII.GetString(data, 0, recv));

}

Console.WriteLine("Stopping client");

client.Close();

}

}

3.
Using the Connect method with Udp client:

Because there is no connection in UDP, the SendTo and ReceiveFrom methods are used to specify the destination address.

However, if a UDP application is sending and receiving data from only one source, then the Connect method can be used to establish a default source/target. Once this is done, the Send and Receive methods can be used to send messages.

Example 3:

	using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

class ConnectedUdpSocketClient

{

public static void Main()

{

Socket client = new Socket(AddressFamily.InterNetwork,

SocketType.Dgram, ProtocolType.Udp);

EndPoint remoteEP = new IPEndPoint(IPAddress.Parse("127.0.0.1"), 9050);

client.Connect(remoteEP);

byte[] data;

string input;

int recv;

while(true)

{

Console.Write("Enter message for server or exit to stop: ");

input = Console.ReadLine();

if (input == "exit")

break;

client.Send(Encoding.ASCII.GetBytes(input));

data = new byte[1024];

recv = client.Receive(data);

Console.Write("Echo from from {0}: ", remoteEP.ToString());

Console.WriteLine(Encoding.ASCII.GetString(data, 0, recv));

}

Console.WriteLine("Stopping client");

client.Close();

}

}

4. Tasks:

1. (a)
The file foldoc.txt [Free On-line Dictionary of Computing] is a dictionary of computing terms. It is formatted as follows: a word or phrase in one line starting from column 0 of the line, followed by the meaning of the word in one or more lines. Each line in the meaning part is either empty, “”, or starts with a tab character, “\t”.
Use the UdpClient class to write a DOS-based UdpDictionaryServer. The server first loads the data in in foldoc.txt into a Hashtable. It then runs in a loop, receiving a word or phrase from a client and sending the meaning of the word. Make your server to be case insensitive.
Note: Hashtable stores key-value pairs and the following lines show how to use it:

Hashtable table = new Hashtable(); //creates an object of has table

string word = “salam”;

string meaning = “Islamic greeting”;

table[word] = meaning; //assigns meaning as the value of the key, word;
string meaning = (string) table[word]; //retrieves the value of the key, word.
(b) Use the UdpClient class to write a GUI-based Dictionary client to work with the server you developed in (a). The user interface should look like the one shown below.
[image: image1.png]0LDOC Dictionary Client

Server Address: 127,001 Port: [agan

Enter your word or phrase: [protocel Define

A set of formal rules describing how o transmit data,
especially across a fnetwork). Low level protocols definc the

electrical and physical standards o be observed, bit- and
byte-ordering and the transmission and {error detection and
correction} of the bit stream. High level protocols deal with

the data formatting, including the {syntax} of messages, the L
terminal to computer dialogue, {character set}s, sequencing of

messages etc.

Many protocols are defined by {RFC}s or by (OST}.

2.(a)
Use the Socket class to write a UDP chat server. The server will act as a central server connecting clients involved in a chat. It uses ArrayList to store EndPoints of all clients involves in the chart.

The server uses an infinite loop to Receive messages from clients. The following table shows the types of messages that may be received and how the server should process each:

	join
	Check if the client’s EndPoint is not in the group, add it

	quit
	Check if the clients’s EndPoint is in the group, remove it

	Any other message
	Send the message to all members of the group

Note: You need to catch SocketException when sending to clients in case a client is no longer active for some reason.
(b) Use the Socket class to write a GUI-based Chat client, with interface similar to the following, to work with the server developed in (a) above. The behavior on clicking each button is:
	“Join Chat”
	The client should create a socket for communicating with the server, send a “join” message to the server and fire a separate thread to run in an infinite loop, receiving messages from the server and displaying them in the “in-box”.

	“Quit Chat”
	The client should send a “quit” message to the server.

	“Send”
	The client should append the text in the “name” box with that in the “out-box”, and send it to the server

Note: Your application must enable/disable buttons appropriately.

[image: image2.png]Udp Chat Client

Server Address:
Your Name:

OutGoing Message

127001

lbashir

Port: [oos0

I Coring Messages

Send

bashic salam
bashic haw ae you

&)

Note: To abort the thread when the client is closed, you need to add the following method:

 protected override void OnClosing (System.ComponentModel.CancelEventArgs e)

 {

 base.OnClosing (e);

if (client != null)

// send a “quit” message to the server;

receiver.Abort(); //where receiver is the receiving thread.

 }
PAGE
7

