INFORMATION & COMPUTER SCIENCE DEPARTMENT, KFUPM

SWE344: Internet Protocols & Client-Server Programming

LAB #03: Delegates, Events, GUI Applications and Threads

Objectives:

To gain experience with:
· Writing and Using Delegates and Events

· Writing GUI Applications
· Writing Multi-threaded Applications
1. Delegates & Events

Delegates:

A Delegate is a class whose instance is used to hold references to methods, so that when the instance is invoked, it automatically invokes all methods associated with it.

Its declaration syntax is similar to a method. In fact a delegate instance can only hold references to methods matching its signature.

Example 1:

	public delegate void PrintingDelegate(String s);

public class DelegateExample {

public static void Writer1(String s) {

Console.WriteLine("From Writer1: "+s);

}

public static void Writer2(String s) {

Console.WriteLine("From Writer2: "+s);

}

public static void Main() {

PrintingDelegate d = new PrintingDelegate(Writer1);

d("Hello There");

//can point to more than one method

d += new PrintingDelegate(Writer2);

Console.WriteLine();

d("Hello There");

//can also point to instance method

Console.WriteLine();

MessageWriter mw = new MessageWriter();

d+= new PrintingDelegate(mw.WriteMessage);

d("Hello There");

//You can also remove a method

Console.WriteLine();

d-= new PrintingDelegate(Writer1);

d("Hello There");

}

}

public class MessageWriter {

public void WriteMessage(String s) {

Console.WriteLine("From MessageWriter: "+s);

}

}

Events.

An event is a modifier used to restrict access to an instance of a delegate.

If a delegate instance is declared with the event modifier, then:

1. Only the class in which it is declared can invoke it.

2. The only operators allowed on the instance from another class are: += and -=.

Example 2:

	using System;

public delegate void EngineMonitor(String s);

public class Car {

private int currentSpeed = 0;

private bool isDead = false;

private int maxSpeed;

private String name;

public event EngineMonitor Exploded = null;

public event EngineMonitor AboutToExplod = null;

public Car(String name, int maxSpeed){

this.name = name;

this.maxSpeed = maxSpeed;

}

public int Speed {

get {return currentSpeed;}

}

public void Accelerate(int increment) {

if (isDead) {

if (Exploded != null)

Exploded("The car has exploded");

}

else {

currentSpeed += increment;

if (currentSpeed >= maxSpeed) {

isDead = true;

if (Exploded != null)

Exploded("The car has exploded");

}

else if (currentSpeed + 20 >= maxSpeed && AboutToExplod != null)

AboutToExplod("Dangerous Speed:"+currentSpeed+", Car about to explod");

else

Console.WriteLine("Current Speed = "+currentSpeed);

}

}

}

public class EventExample {

public static void Main() {

Car myCar = new Car("Corola", 200);

//register with event source

myCar.Exploded += new EngineMonitor(OnExplod);

myCar.AboutToExplod += new EngineMonitor(OnAboutToExplod);

//speed up

for (int i=0; i<10; i++)

 myCar.Accelerate(20);

//cancel registration to events

myCar.Exploded -= new EngineMonitor(OnExplod);

myCar.AboutToExplod -= new EngineMonitor(OnAboutToExplod);

//no response

for (int i=0; i<10; i++)

 myCar.Accelerate(20);

}

public static void OnExplod(String s) {

Console.WriteLine("Message from car: "+s);

}

public static void OnAboutToExplod(String s) {

Console.WriteLine("Message from car: "+s);

}

}

The EventHandler class

Because the use of delegates to handle events is very common in GUI programming, C# has defined a special delegate named, System.EventHandler, which is used by most control classes to handle events.

The signature for such delegate is :

public Delegate void EventHandler(object source, EventArgs e)
where source is the object that fires the event and e contains any additional information about the event.

However, the EventArgs class does not have any fields that can be used to pass the event information to the client. The programmer is expected to create a sub class from it, in which the desired fields and methods can be defined.

Example 3:

	using System;

public class EventMessage : EventArgs {

 private string message;

public EventMessage(string msg) {

message = msg;

}

public string Message {

get {return message;}

}

}

public class Car {

private int currentSpeed = 0;

private bool isDead = false;

private int maxSpeed;

private String name;

public event EventHandler Exploded = null;

public event EventHandler AboutToExplod = null;

public Car(String name, int maxSpeed){

this.name = name;

this.maxSpeed = maxSpeed;

}

public int Speed {

get {return currentSpeed;}

}

public void Accelerate(int increment) {

if (isDead) {

if (Exploded != null)

Exploded(this, new EventMessage("The car has exploded"));

}

else {

currentSpeed += increment;

if (currentSpeed >= maxSpeed) {

isDead = true;

if (Exploded != null)

Exploded(this, new EventMessage("The car has exploded"));

}

else if (currentSpeed + 20 >= maxSpeed && AboutToExplod != null)

AboutToExplod(this, new EventMessage("Dangerous Speed:"+

 currentSpeed+", Car about to explod"));

else

Console.WriteLine("Current Speed = "+currentSpeed);

}

}

}

public class EventExample {

public static void Main() {

Car myCar = new Car("Corola", 200);

//register with event source

myCar.Exploded += new EventHandler(OnExplod);

myCar.AboutToExplod += new EventHandler(OnAboutToExplod);

//speed up

for (int i=0; i<10; i++)

 myCar.Accelerate(20);

//cancel registration to events

myCar.Exploded -= new EventHandler(OnExplod);

myCar.AboutToExplod -= new EventHandler(OnAboutToExplod);

//no response

for (int i=0; i<10; i++)

 myCar.Accelerate(20);

}

public static void OnExplod(Object source, EventArgs e) {

Console.WriteLine("Message from car: "+((EventMessage)e).Message);

}

public static void OnAboutToExplod(Object source, EventArgs e) {

Console.WriteLine("Message from car: "+((EventMessage)e).Message);

}

}

2. GUI Applications
Writing GUI involves two things, namely, designing the user-interface, and event-handling.

User-Interface Design:

Designing the user-interface has been greatly simplified by the system.

Simply create a Windows Forms project, drag and drop the appropriate controls to the design window, organize them to the desired layout and set their properties as desired using the Solution Explorer.

[image: image1.png]Test Car Events

Masinum Spesd: [200

Cor Name: Corcla Create Car Object

Speed Increment: [2 Accderate

CurertSpeed: ~[1g0

Message from car: Dangerous Speed: 180,
Car about to explod

Event Handling:

Each control has a number of events (event delegates) of type, EventHandler, to which you can register your event handling methods.

To view the events for a given control, you first select the component from the design window, then click the events tab, [image: image2.png]

, from the solution explorer. This will list all events related to the control.

For each event that you wish to register, type the name of the method that you wish associate with the event. If the method does not exist, the system will automatically create it with an empty body, which you can then fill.

Example:

void AccelerateBtnClicked(Object source, EventArgs arg) {

}
3. Threads
Multi-threaded applications are created by creating an instance of: System.Threading.Thread class.

The constructor of the Thread class takes an instance of System.Threading.ThreadStart delegate as parameter.

The ThreadStart delegate in turn takes a method of the form: void MethodName()

Example 4:

	using System;

using System.Threading;

public class ThreadedCounters {

public static void Main(){

Thread thread1 = new Thread(new ThreadStart(Counter1));

thread1.Start();

Thread thread2 = new Thread(new ThreadStart(Counter2));

thread2.Start();

}

public static void Counter1() {

for (int i = 0; i<10; i++) {

Console.WriteLine("Counter 1: "+i);

Thread.Sleep(35);

}

}

public static void Counter2() {

for (int i = 0; i<10; i++) {

Console.WriteLine("Counter 2: "+i);

Thread.Sleep(20);

}

}

 }

Thread Life Cycle:

[image: image3.png]Blocked

Example 5:

	using System;

using System.Drawing;

using System.Windows.Forms;

using System.Threading;

using System.ComponentModel;

namespace CarRace {

public class MainForm : System.Windows.Forms.Form
{

private System.Windows.Forms.PictureBox car1;

private System.Windows.Forms.Button StartStop;

int leftX, rightX, X, Y;

Thread driver;

bool start = false;

public MainForm()
{

InitializeComponent();

X=leftX=Bounds.Left;

Y=car1.Location.Y;

rightX=Bounds.Right;

car1.Location = new Point(X,Y);

driver = new Thread(new ThreadStart(DriveCar));

}

public static void Main(string[] args)
{

Application.Run(new MainForm());

}

private void InitializeComponent() {

}

void DriveCar() {

while (true) {

while (X < rightX) {

X += 10;

car1.Location = new Point(X,Y);

Refresh();

Thread.Sleep(30);

}

X = leftX-100;

}

}

protected override void OnClosing (CancelEventArgs e) {

if (driver.IsAlive)

driver.Abort();

 base.OnClosing (e);

 }

void StartStopClick(object sender, System.EventArgs e) {

if (!start) {

start = true;

StartStop.Text = "Stop";

if (driver.IsAlive)

driver.Resume();

else

driver.Start();

}

else {

start = false;

StartStop.Text = "Start";

driver.Suspend();

}

}

}

}

 Tasks:
1. (a) Create a C# Library project named, BankClasses, and add the provided BankClasses.cs source file to the project. Now modify the source file as follows:

(i) Inside the namespace, define a delegate, TransactionMonitor, with the following signature: void TransactionMonitor(String s)
(ii) In the BankAccount class, define an event delegate, OnTransaction of type TransactionMonitor
(iii) Modify the methods, deposit and withdraw as described below:

	Deposit method
	The method should fire the OnTransaction event, sending an appropriate success of failure message, depending on whether the amount being deposited is positive or negative.

	Withdraw method
	The method should fire the OnTransaction event, sending an appropriate success of failure message. Success if the amount is positive and less than or equal to the balance. Failure if the amount is negative or greater than the balance.

(b) Write a GUI Application, TestBanking, with interface similar to the following:

[image: image4.png]BankAccount Application

Create Accourt
‘Account Number.

Customer Name:

Inifal Baance:

Transaction

9939

[Ami Usman

500

Amount:

Depost

Create Accourt

vitdon | e ptres |

Deposit done successfully

When the entries in the “Create Account” section are entered and the “CreateAccount” button is clicked, a BankAccount instance is created and an appropriate message is displayed.

Your application should register with the OnTransaction event so that if any of the buttons in the “Transaction” section is clicked, the appropriate transaction is performed and the status of the transaction is displayed at the bottom.

2. Modify the CarRasing example so that it animates the second car (green_car.gif)in the bottom half of the window. The second car should be handled by another thread. Both cars should be controlled by the same start/stop button.
PAGE
8

