INFORMATION & COMPUTER SCIENCE DEPARTMENT, KFUPM

SWE344: Internet Protocols & Client-Server Programming

LAB #03: OO-Features & Streams in C#

Objectives:

To gain experience with:

· OO-Features of C#: Types (Classes, Interfaces, Structures & Enumerators), Inheritance & Polymorphism.
· Exception Handling

· Basic Stream IO

1.
C# OO-Features
A C# program is a collection of types, defined in source files, organized by namespaces, and complied into assemblies (.exe or .dll files).

A Class:

Example 1:

	using System;

namespace BankAccount {

public class BankAccount {

const double charityRate = 2.5;

static int count;

string name;

int accountNumber;

double balance;

public BankAccount(string name) {

this.name = name;

accountNumber = ++count;

}

public BankAccount(string name, double amount) : this(name) {

balance = amount;

}

public void Deposit(double amount) {

if (amount > 0)

balance += amount;

}

public void Withdraw(double amount) {

if (balance >= amount) {

balance -= amount;

}

}

public double Balance {

get {return balance;}

}

public double GetAnnaulCharity() {

double charity = balance * charityRate /100;

balance -= charity;

return charity;

}

public static void PrintCustomerCount() {

Console.WriteLine("Number of Customers = "+count);

}

public override String ToString() {

return "Acc #:"+accountNumber + ":"+name + ": "+balance;

}

}

class TestAccount {

public static void Main() {

BankAccount acc1 = new BankAccount("Sami", 2000);

BankAccount acc2 = new BankAccount("Omar");

	

acc1.Deposit(3000);

acc1.Withdraw(4000);

Console.WriteLine(acc1);

acc2.Deposit(5000);

acc2.Withdraw(2000);

Console.WriteLine(acc2);

BankAccount.PrintCustomerCount();

}

}

}
	

Access Modifiers:

	public
	Fully accessible to all other types. This is the implicit accessibility for interfaces and enums.

	internal
	Accessible within the same assembly. This is the default for non-nested classes.

	private
	Accessible only from the type itself. This is the default for members of classes (and structs)

	protected
	Accessible within same class or sub-classes.

	protected internal
	Accessible by sub-classes as well as internal classes (equivalent to Java’s protected).

Inheriatnce & Polymporhism

In C#, A class can extend another, there by inhering its members, override some of them and define new ones.

However, overriding is not allowed automatically. The base class must indicate that it is willing to allow its method to be overridden by declaring the method as virtual, abstract or override.

The subclass must also indicate that it is overriding the method by using the override keyword.

Example 2:

	using System;

namespace Shapes {

public abstract class Shape : IComparable {

public String name() {

return GetType().Name;

}

public abstract double Area();

public abstract double Perimeter();

public override String ToString() {

return "Type:"+name() + ":" + Perimeter() + ":" + Area();

}

public int CompareTo(Object obj) {

Shape shape = (Shape) obj;

if (Area()< shape.Area())

return -1;

else if (Area() > shape.Area())

return 1;

else

return 0;

}

}

public class Rectangle : Shape {

private double length;

private double width;

public double Length {

get {return length;}

set {length = value;}

}

public double Width {

get {return width;}

set {width = value;}

}

public Rectangle(double length, double width) {

this.length = length;

this.width = width;

}

public override double Area() {

 return length*width;

}

public override double Perimeter() {

return 2*length + 2*width;

}

}

public class Square : Rectangle {

public Square(double length) : base(length, length) {

}

}

public class Circle : Shape {

private double radius;

public double Radius {

get {return radius;}

set {radius = value;}

}

public Circle(double r) {

radius = r;

}

public override double Area() {

return Math.PI * (radius * radius);

}

public override double Perimeter() {

return 2.0 * Math.PI * radius;

}

}

public class TestShapes {

public static void Main(String[] args) {

Shape[] shape = new Shape[3];

shape[0] = new Rectangle(20, 10);

shape[1] = new Square(10);

shape[2] = new Circle(7);

for (int i=0; i<shape.Length; i++)

Console.WriteLine(shape[i]);

//using is and as operators

foreach (Shape s in shape) {

if (s is Circle) {

Circle c = s as Circle;

Console.WriteLine("The radius is: "+c.Radius);

}

}

//sorting the shapes

Array.Sort(shape);

Console.WriteLine("sorting");

for (int i=0; i<shape.Length; i++)

Console.WriteLine(shape[i]);

}

}

}

Structures (struct):

struct is similar to a class in its declaration and in terms of the members it can have (constructors, fields, methods, properties, etc.)

Structs are value types not reference types, thus, they do not incur the overhead associated with reference types.

However, their use is limited as they can neither be derived from, nor can they derive from other structs - except from the System.Value type, which all structs implicitly derived from.

Example 3:

	struct Color {

 public int Red;

 public int Green;

 public int Blue;

 public Color(int red, int green, int blue) {

 Red = red;

 Green = green;

 Blue = blue;

 }

 public override String ToString() {

 return "(Red="+Red+ ", Green="+Green+ ", Blue=" + Blue+")";

 }

}

Can be instantiated with or without using new:

	Color rgb;

rgb.Red = 0;

rgb.Green = 0;

rgb.Blue = 0;

Console.WriteLine(rgb);
	Color rgb = new Color();

Console.WriteLine(rgb);

	
	Color rgb = new Color(0, 25, 30);

Console.WriteLine(rgb);

Enumerators (enum):
enum is a special value type, which is used to assign symbolic names to a sub-set of values of an underlying integral type (int, uint, byte, sbyte, short, etc – except char). An enum has a name, an underlying type, and a set of fields.

Example:
	public enum WeekDay {

 Sunday,

 Monday,

 Tuesday,

 Wednesday,

 Thursday,

 Friday,

 Saturday

}
	public enum WeekDay : byte {

 Sunday = 1,

 Monday,

 Tuesday,

 Wednesday,

 Thursday,

 Friday,

 Saturday

}

The advantage of using enum is that they make a code more readable and less error prone. Example, compare the following two methods:

	public static bool IsWeekEnd(WeekDay day) {

return day == WeekDay.Thursday || day == WeekDay.Friday;

}

	public static bool IsWeekEnd(int day) {

return day == 5 || day == 6;

}

The System.Enum class provides static methods that can be used to manipulate enum types. Some of these methods are:

	static string GetName(Type, object)
	Returns the name of an enum object as a string

	static string[] GetNames(Type)
	Returns all the names of the constants of an enum

	static Array GetValues(Type)
	Returns all the values of the constants of an enum

	static object Parse(Type, string)
	Converts the name (a string) of an enum constant to an enumerated object

 For example, the following prints the constants and the values of WeekDay .
	String[] names = Enum.GetNames(typeof(WeekDay));

foreach(string s in names)

Console.WriteLine(s);

byte[] values = (byte[]) Enum.GetValues(typeof(WeekDay));
foreach(byte i in values)

Console.WriteLine(i);

2.

Exception Handling:

Like Java, C# handles errors using exceptions. However, in C#, all exceptions are run-time exceptions derived from the System.Exception class.

A method uses the throw keyword to raise an exception when an error condition occurs. For example, the following divide method raises a DivideByZeroException when the second number is zero.

	using System;

public class TestException {

public static double Divide(double x, double y) {

if (y==0)

throw new DivideByZeroException("Can't divide by zero");

else

return x/y;

}

public static void Main() {

try {

Console.Write("Enter first value: ");

double x = double.Parse(Console.ReadLine());

Console.Write("Enter second value: ");

double y = double.Parse(Console.ReadLine());

Console.WriteLine(x + "/" + y + " = "+ Divide(x, y));

}

catch (DivideByZeroException e) {

Console.WriteLine(e.Message);

}

catch (FormatException) {

Console.WriteLine("Format exception occurs");

}

catch {

Console.WriteLine("Some Other Exception occurs");

}

}

}

3.

Basic Stream IO:

In C#, like in Java, IO operations are designed around streams - a sequence of bytes traveling from a source to a destination.

The Stream class

The InputSream and OuputSream classes that we know in Java are unified in C# into a single abstract class, Stream.

The basic methods of the Stream class are shown below:

	int Read (in byte[] buffer, int offset, int count)
	Reads count bytes into the buffer array, stating at index offset. Returns the number of the actual bytes read or 0

	int ReadByte()
	Reads and return one byte or returns -1 if at the end of the stream.

	void Write(in byte[] buffer, int offset, int count)
	Writes count bytes from the buffer array, stating at index offset, into a stream.

	void WriteByte(byte)
	Writes a byte at the current position in the stream and advances the position by one.

	void Flush()
	Clears all buffers for this stream and causes any buffered data to be written to the underlying device.

	void Close()
	Closes the current stream and releases any resources associated with the stream.

The FileStream class

FileStream is an example of a concrete class that extends the Stream class. It allows streams of bytes to be transferred between a source file and a destination file.

Another concrete class that extends the Stream class is the NetworkStream class. A lot of our network programs will use this class.

Constructors:

public FileStream(string path, FileMode mode)

public FileStream(string path, FileMode mode, FileAccess access)

public FileStream(string path, FileMode mode, FileAccess access, FileShare share)

FileMode is an enum with the following values:

	Append
	Opens the file if it exists and seeks to the end of the file, or creates a new file. Can only be used in conjunction with FileAccess.Write.

	Create
	Creates a new file. If the file already exists, it will be overwritten.

	CreateNew
	Creates a new file. If the file already exists, an IOException is thrown.

	Open
	Opens an existing file. A FileNotFoundException is thrown if the file does not exist.

	OpenOrCreate
	Opens a file if it exists; otherwise, a new file is created.

	Truncate
	Opens an existing file. Once opened, the file is truncated so that its size is zero bytes.

FileAccess is also an enum used to specify whether the file is being opened for reading, writing or both (the default). Its values are Read, Write and ReadWrite.

FileShare is used to specify how other threads or processes should be allowed access to the same file. The values are: Inheritable, Read, Write, ReadWrite

Some useful properties of the FileStream class are: CanRead, CanWrite, Length (size) and Position.

Example:

	using System;

using System.IO;

public class StreamFileIO {

public static void Main() {

try {

FileStream inFile = new FileStream("saudiflag.gif", FileMode.Open);

FileStream outFile = new FileStream("flagcopy.gif", FileMode.Create);

byte[] buffer = new byte[1024];

while (inFile.Position < inFile.Length) {

int read = inFile.Read(buffer, 0, buffer.Length);

outFile.Write(buffer, 0, read);

}

inFile.Close();

outFile.Close();

}

catch (FileNotFoundException) {

Console.WriteLine("Sorry, File not found");

}

catch (Exception e) {

Console.WriteLine("Sorry, Exception: "+e);

}

}

}

Text IO

For the purpose of Text IO, C# has separate classes for input and for output, namely, StreamReader and SreamWriter, respectively.

SreamReader:

The most common constructors for the StreamReader class are:

public StreamReader(string path) //using UTF-8 as the default encoding.

public StreamReader(string path, Encoding encoding)

Some of the methods of StreamReader class are:
	int Read()
	Reads a single character, returns –1 if end of stream

	int Peek()
	Returns the next character without reading it, or –1 if end of stream.

	void Read(char[], int offset, int count)
	Reads an array of characters

	string ReadLine()
	Reads a line of characters

	string ReadToEnd()
	Reads from the current position to end

StreamWriter:

The most common constructors for the StreamWriter class are:

public StreamWriter(string path) //using UTF-8 as the default encoding

public StreamWriter(string path, bool append) //for appending

public StreamWriter(string path, Encoding encoding)

public StreamWriter(string path, bool append, Encoding encoding)

The basic methods of the StreamWriter are Write and WriteLine.

These are overloaded to accept char, char[], string, and each of the value types.

The following example shows how to read and write to a text file.

	using System;

using System.IO;

public class TextFileIO {

public static void Main() {

try {

StreamReader inFile = new StreamReader("SWE344.txt");

StreamWriter outFile = new StreamWriter("output.txt");

String line = null;

while ((line = inFile.ReadLine()) != null) {

Console.WriteLine(line);

outFile.WriteLine(line);

}

inFile.Close();

outFile.Close();

}

catch (FileNotFoundException) {

Console.WriteLine("Sorry, File not found");

}

catch (Exception e) {

Console.WriteLine("Sorry, Exception: "+e);

}

}

}

4. Tasks:

1. Create a C# Library Project named StudentClasses conating the following types:

(a) An Enumeration, MajorType, with constants, SWE and CS.

(b) An Enumeration, SWE344Section, with constants, SWE344_51, SWE344_52, and values, 51 and 52 respectively.

(c) A class, Student that implements the IComparable interface (based on id number) and has the following members:

i. Fields: id, name and major of type MajorType.

ii. Two Constructors: First one should have id as parameter and the second should have all the three fields as parameters and should make use of the first.

iii. Properties for the three fields. Note: ID should be read-only.

iv. ToString() method that returns a string concatenating the fields separated by tabs.

(d) A class, SWE344Student, with the following members:

i. Additional field, section, of Type SWE244Section.

ii. Two constructors, first with only ID and the second with all the four fields as parameters. Note: Each constructor should call the appropriate base class constructor to initialize fields already defined in the base class.

iii. Additional property, Section.

iv. Should override the ToString() method by appending the section to the string returned by the ToString() method of the base class.

(e) Compile your code into a dll file, StudentClasses.dll.

2. Create a Console Application project, TestStudent, that has one class with at least the following methods:

(a) A method: static void WriteToFile(StreamWriter cs, StreamWriter swe, SWE344Student s)
that takes an SWE344Student object and two StreamWriter objects. If the major of the student is CS, the object is written to the first stream and if his major is SWE, he is written to the second stream.

(b) The main method, which opens the text file, “swe344.txt” for reading, and two other files, “cs.txt” and “swe.txt” for writing. For each line read from “swe344.txt”, the method should split the record into the various fields and use them to create an SWE344Student object. The object, together with the two StreamWriters are then passed to the WriteToFile method for writing into the appropriate file. The student object should also be printed on the Console.

Notes:

· Make sure you store your “swe344.txt” file inside the \bin\debug folder.

· Remember to close all files after processing.

· You need to add StudentClasses.dll as a reference to the TestStudent project and add the appropriate using statement.

· The fields in the “swe344.txt” file are separated by tab character‘\t’.

PAGE
1

