INFORMATION & COMPUTER SCIENCE DEPARTMENT, KFUPM

SWE344: Internet Protocols & Client-Server Programming

LAB #02: Basics of C#

Objectives:

To gain experience with The basics of the C# Language

· The Format of a C# Program [namespace, class, methods, naming-convention]

· Some Basic Classes [object, string, Console]

· Value Types & Operators [comparison with Java, boxing and unboxing]

· Control Structures [if, case, for, while, do-while, foreach]

1. The Format of a C# Program:

Example 1:
	using System;

namespace Greeting

{

class SalamShabab

{

static void Main(string[] args)

{

Console.WriteLine("Salam Shabab");

}

}

}

2. Some Basic Classes:

The object Class: As in Java, object (also written as Object) is the root of all types – both value and reference types.
The string class (also written as String) is very similar to Java. The following are some of its method.

	bool EndsWith(string)
	Determines if the end of this instance matches the specified String.

	bool Equals(object)
	Overloaded. Overridden. Determines whether two String objects have the same value.

	int IndexOf(char)

int IndexOf(string)
	Overloaded. Reports the index of the first occurrence of a String, or one or more characters, within this instance.

	int LastIndexOf(char)

int LastIndexOf(string)
	Overloaded. Reports the index position of the last occurrence of a specified Unicode character or String within this instance.

	String[] Split(char[])
	Overloaded. Identifies the substrings in this instance that are delimited by one or more characters specified in an array, then places the substrings into a String array.

	bool StartsWith(string)
	Determines whether the beginning of this instance matches the specified String.

	String Substring(int start)

String Substring(int start, int count)
	Overloaded. Retrieves a substring from this instance.

	String ToLower()
	Overloaded. Returns a copy of this String in lowercase.

	String ToUpper()
	Overloaded. Returns a copy of this String in uppercase.

	String Trim()

String Trim(char[])
	Overloaded. Removes all occurrences of a set of specified characters from the beginning and end of this instance.

	String TrimEnd(char[])
	Removes all occurrences of a set of characters specified in a Unicode character array from the end of this instance.

	String TrimStart(char[])
	Removes all occurrences of a set of characters specified in a Unicode character array from the beginning of this instance.

Example: 2

	using System;

public class FilenameProcessor {

public static void Main(String[] args) {

String fullName = "d:/workarea/lab02/MoveRectangle.java";

char separator = '/';

int dotPosition = fullName.IndexOf('.');

int lastSlashPosition = fullName.LastIndexOf(separator);

Console.WriteLine("The full name is: "+fullName);

String path = fullName.Substring(0, lastSlashPosition);

Console.WriteLine("The path is : "+path);

String fileName = fullName.Substring(lastSlashPosition+1,

 dotPosition-lastSlashPosition-1);

Console.WriteLine("The file name is : "+fileName);

String fileExtension = fullName.Substring(dotPosition+1);

Console.WriteLine("The extension is : "+fileExtension);

}

}

The Console class is use for basic console I/O. It has many methods including: Write, WriteLine, Read and ReadLine.

3. Value Types and Operators.

Value Types: C# has all the value types (primitive types) of Java and More as the following table shows.

	C# Type
	.Net Framework (System) type
	Signed?
	Bytes Occupied
	Possible Values

	sbyte
	System.Sbyte
	Yes
	1
	-128 to 127

	short
	System.Int16
	Yes
	2
	-32768 to 32767

	int
	System.Int32
	Yes
	4
	-2147483648 to 2147483647

	long
	System.Int64
	Yes
	8
	-9223372036854775808 to 9223372036854775807

	byte
	System.Byte
	No
	1
	0 to 255

	ushort
	System.Uint16
	No
	2
	0 to 65535

	uint
	System.UInt32
	No
	4
	0 to 4294967295

	ulong
	System.Uint64
	No
	8
	0 to 18446744073709551615

	float
	System.Single
	Yes
	4
	Approximately ±1.5 x 10-45 to ±3.4 x 1038 with 7 significant figures

	double
	System.Double
	Yes
	8
	Approximately ±5.0 x 10-324 to ±1.7 x 10308 with 15 or 16 significant figures

	decimal
	System.Decimal
	Yes
	12
	Approximately ±1.0 x 10-28 to ±7.9 x 1028 with 28 or 29 significant figures

	char
	System.Char
	N/A
	2
	Any Unicode character (16 bit)

	bool
	System.Boolean
	N/A
	1 / 2
	true or false

As indicated in the table, each of the value type has a Wrapper class that can be used to Box it.

Example 3:

	using System;

namespace DataTypes

{

class ReadingData

{

public static void Main(string[] args)

{

Console.Write("Enter an integer : ");

int i1 = int.Parse(Console.ReadLine());

Console.Write("Enter another integer: ");

int i2 = int.Parse(Console.ReadLine());

Console.WriteLine("Sum: "+i1 + " + " + i2 + " = " + (i1 + i2));

Console.Write("Enter a double : ");

double d1 = Double.Parse(Console.ReadLine());

Console.Write("Enter another double: ");

double d2 = Double.Parse(Console.ReadLine());

Console.WriteLine("Product: {0} x {1} = {2}", d1, d2, (d1 * d2));

Console.ReadLine();

}

}

}

Also must of the operators in C# are the same those of Java as the following table shows. The operators are listed in order of their precedence.
	Category
	Operators

	Primary
	x.y f(x) a[x] x++ x-- new typeof

checked unchecked

	Unary
	+ - ! ~ ++x --x (T)x

	Multiplicative
	* / %

	Additive
	+ -

	Shift
	<< >>

	Relational and type testing
	< > <= >= is as

	Equality
	== !=

	Logical AND
	&

	Logical XOR
	^

	Logical OR
	|

	Conditional AND
	&&

	Conditional OR
	||

	Conditional
	?:

	Assignment
	= *= /= %= += -= <<= >>= &= ^= |=

4. Control Structures:

The control structures, if, case, for, while, do-while, have exactly the same syntax as in Java.

There is a semantic difference with case in that it allows strings to be used as labels. Also each baranch must have an explicit break.

In addition to the above, there is a foreach statement which is used with Collections.

Example 4:

	using System;

public class ControlStructures
{

public static void Main()

{

String input;

do

{

Console.Write("Type int values to add or stop to exit: ");

input = Console.ReadLine();

if (input.ToLower() != "stop")

{

char[] delimiters = {' ', '\t', ','};

String[] tokens = input.Split(delimiters);

int sum = 0;

foreach (String token in tokens)

sum += int.Parse(token);

Console.WriteLine("The sum is: "+sum);

}

} while (input.ToLower() != "stop");

}
}

5. Tasks:

1. Write a program that reads two integers and print out the maximum, the minimum, the sum and the average (i) using the Math class (ii) by defining your own static methods

(a). Compile and run

(b). Trace the program execution step by step
2. Design a menu-driven console application to help an instructor teaching a specific course to manage student grades. The instructor should be able to enter information about students in his class once. This information includes number of students, their names and their grades in a number of quizzes. Then, he should be able to display grade roster showing all grades, the total and the average for each student, and the average for each quiz and total average for the whole class. Also he should be to delete a student, update student information, add a new student, display students sorted by name or by total grade, etc. Choose a design approach and justify your choice.

(a). Use parallel arrays or
(b). Use OOP and array of objects

(c). Pay attention to the user interface to be more flexible, appealing, etc

