KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Information and Computer Science Department

Second Semester 2003 (032)

ICS-201 Introduction to Computer Science

Lab 10: Software Engineering Practices

Objectives:
In this lab, we would introduce the practices on the object-oriented system analysis and design processes using Unified Modeling Languages (UML) particularly class diagram.
What is UML?
The Unified Modeling Language (UML) is, as its name implies, a modeling language and not a method or process. UML is made up of a very specific notation and the related grammatical rules for constructing software models.
The UML provides significant benefits to software engineers and organizations by helping to build rigorous, traceable and maintainable models, which support the full software development lifecycle.
What is Class Diagram?
A class diagram shows the existence of classes and their relationships in the logical view of a system. The purpose of a class diagram is to represent the classes within a model.

UML modeling elements in class diagrams:
· Classes and their structure and behavior

· Association, aggregation, dependency, and inheritance relationships

· Multiplicity and navigation indicators

Class
A Class is a standard UML construct used to detail the pattern from which objects will be produced at run-time. A class is a specification - an object an instance of a class. The Class Model is at the core of object-oriented development and design - it expresses both the persistent state of the system and the behavior of the system. A class encapsulates state (attributes) and offers services to manipulate that state (behavior).

The fundamental element of the class diagram is an icon the represents a class. This icon is shown as:

[image: image1.png]Class
Attribute

operation ()

A class icon is simply a rectangle divided into three compartments. The topmost compartment contains the name of the class. The middle compartment contains a list of attributes (member variables), and the bottom compartment contains a list of operations (member functions). The following figure shows a typical UML description of a class that represents a circle.

[image: image2.emf]Circle

itsX : double

itsY : double

radius : double

getX()

getY()

getRadius()

Corresponding Java Template:

public class Circle {

private double itsX;

private double itsY;

private double radius;

public Circle(){

// ….

}

public double getX(){

}

public double getY(){

}

public double getRadius(){

}

}
Interfaces

There are classes that have nothing but pure virtual (abstract) functions (methods). In Java such entities are called an interface. UML has followed the Java example and has created some special syntactic elements for such entities.

The primary icon for an interface is just like a class except that it has a special denotation called a stereotype. The «type» stereotype indicates that the class is an interface. This means that it has no member variables (unless constants), and that all of its functions are pure virtual (abstracts).
[image: image3.emf]GraphicCalculator

$ PI : double = 3.14

findArea()

findCircumference()

findVolume()

<<Interface>>

Corresponding Java Template:

public interface GraphicCalculator {

public final double PI = 3.14;

public abstract double findArea();

public abstract double findCircumference();

public abstract double findVolume();

}
Relationships

Logical elements may be related in a variety of ways. The following are the most common:

Association

Association relationships capture the static relationships between entities. These generally relate to one object having an instance of another as an attribute or being related in the sense of owning. For example a Circle has an association to its point (as in the image below).
[image: image4.emf]Circle

radius : double

itsPoint : Point

getX()

getY()

getRadius()

Point

x : double

y : double

Corresponding Java Template:

public class Circle {

private double radius;

private Point itsPoint;

public Circle(){

// ….

}

// …….

}
Aggregation
Aggregation relationships define whole/part relationships. The weak form of aggregation is denoted with an open diamond. This relationship denotes that the aggregate class (the class with the white diamond touching it) is in some way the “whole”, and the other class in the relationship is somehow “part” of that whole.
The example below indicates that a College aggregates or collects together a number of Departments and that there is a whole/part relationship - that is the college is made up of (in part) this collection of departments.

[image: image5.emf]College

name

Department

name

1..* 1..*

Corresponding Java Template:

public class College {

private String name;

private Department itsDepartments[];

public College(){

// ….

}

// …….

}
Composition
Each instance of type Circle seems to contain an instance of type Point. This is a relationship known as composition. It can be represented in UML using a class relationship. The figure below shows the composition relationship.

[image: image6.png]Circle

Point

Corresponding Java Template:

public class Circle {

private Point itsPoint;

// …….

}
The black diamond represents composition. Composition relationships are a strong form of containment or aggregation.
Inheritance (Generalization)
Inheritance describes the hierarchical relationship between classes. It describes the 'family tree'. The inheritance relationship in UML is represented by a peculiar triangular arrowhead. This arrowhead that looks rather like a slice of pizza, points to the base class (super class). One or more lines proceed from the base of the arrowhead connecting it to the derived classes.

The figure below shows the form of the inheritance relationship. In this diagram we see that Circle and Square both derive from Shape.
[image: image7.emf]Shape

draw()

Circle

Square

Corresponding Java Templates:

public class Shape {

// …….

public void draw(){

}

}
public class Circle extends Shape {

// …….

}
public class Square extends Shape {

// …….

}
Realization

Realization is a relationship between a class (subclass that implements) and a super class that has a stereotype of interface. The realization relationship in UML is represented by a peculiar triangular arrowhead with dashed line. This arrowhead points to the base class (or super class) that has a stereotype of interface.

The figure below shows the form of the realization relationship. In this diagram we see that Circle and Square both implements GraphicCalculator.
[image: image8.png]<<interface>>
GrapticCalculator

@iri=ais

indarea()
MndCircumference)
Sfndvolumeq

Rectangle

Corresponding Java Templates:

public interface GraphicCalculator {

// …….

}
public class Circle implements GraphicCalculator {

// …….

}
public class Square implements GraphicCalculator {

// …….

}
Multiplicity and Navigation
Multiplicity defines how many objects participate in a relationship.
· Multiplicity is the number of instances of one class related to ONE instance of the other class.

· For each association and aggregation, there are two multiplicity decisions to make: one for each end of the relationship
The following are the possible notation for multiplicity:
· 1

– exact one

· * or 0 .. * or 0 .. n

– zero or more

· 1 .. * or 1 .. n

– one or more

· 2 .. 10

- 2 to 10 (exact range)

Navigation is the direction of the relationships between the classes. Although associations and aggregations are bi-directional by default, it is often desirable to restrict navigation to one direction. If navigation is restricted, an arrowhead is added to indicate the direction of the navigation.

Te following example shows that a student to must take at least one courses in the semester. It has a direction from Student to the Course since student may have list of courses, while the Course is not depend on the existence of Student.
[image: image9.emf]Student

id : int

gpa : double

semCourses[] : Course

getId()

getGPA()

getSemCourses()

Course

dept : short

code : short

getDept()

getCode()

1..* 1 1..* 1

Corresponding Java Templates:

public class Student {

private int id;

private double gpa;

private Course semCourses[];

// …….

}
public class Course {

private short dept;

private short code;

// …….

}
Example:

The fact: Course offering System.

In a particular university, a course – identify with name and code -- may compose of many sections – identified by number and location --. The course is offered by a department, of course a department may offer many courses (at least one should be offered). In each section of the course there will be an instructor (id, name, rank, and department) who teach that section and lots of students (id, name, gpa, department). However, a section of a course must have at least 5 (five) students or more. A student can take more than one course sections. An instructor is belonging to a department. He may teach the course section more than one. There are two type of student in the university, Undergraduate Student, and Graduate Student. The graduate student has additional information such as work load and thesis title.

The Alternative Class diagram:
[image: image10.png]Departement

Faculty @ code javaang Siing
i it &name : javatang Sing
&rank: java lang String f3culties &location : int
Sgetdy - SgetCodeg
SgetRank) Sgetiiamed
SgetLocationy
Course oo 12
@cose:int ourses
&name javalang Sting
&oredt: int
SgetCodeg
Sgetiiamen
SgetCredit)
0r 1
Student
Section Y &id - int
@rurer:int | - 5| Soname: javalang sring
&iocation: int &ugpa - double
Sgetiumber) Sgety
Sgetocaton) Sgetiiamen
/ getopay
Graduate
@worioad int
(@ nesisTite - javalang Sting T

SgetworkLoad()
PgetThesisTitle(

Exercises
Create a Class diagram and Java Program templates using Rational Rose software to represent the following requirements:
System:
Computer Order System

Description:
A company has a business to sell a product thru order. To be able to order the book, we have to be a customer of the company. As a customer we have to submit our information such as national id, name, address, and phone number. When we become a customer, we could make order to the company. In each order, it will be printed order id, order date, the customer who makes an order, the employee (it has id, name, and title) who handles the order, and the list of the products. Products are classified into three categories book, software, and hardware. Each product will be given code, name, price, and stock. The Book has additional information such as the author name, publisher, and year. The software will have additional information such as; operating system, company, and version. The hardware consists of type, and brand.
System:
Bank Account
Description:
A specific bank would like to develop application for the account system. In the system, there are customers who have information such as: National_Id, Name, Phone, and Address. Each customer can have many accounts. The account has the following information Account_Id, Balance. There are four types of accounts: Current_Account, Checking_Account, Saving_Account, and Join_Account. Each Current_Account will be given a ATM_CARD which has Card_Number and Pin, each Checking_Account will be given a set of check_book which has the prefix_number, and amount, each Saving_Account will be given the commission based on the balance and company profits, and each Joint_Account will have list of customers who are registered in this account.

