
1

Chapter 8

Command and Natural Languages

2

The Basic Goals of Language Design

Precision
Compactness
Ease in writing and reading
Speed in learning
Simplicity to reduce errors
Ease of retention over time

3

Computers and Languages

After printing press, computer has been a remarkable
stimulus to language development, because

widespread dissemination through networks is possible,
computers are a tool to manipulate languages, and
languages are a tool to manipulate computers

Computers impact is mostly on the development of
numerous formal written languages – from mathematical
ones to those that help in operating real world activities.

High-level programming languages (procedural and OO)
Scripting languages
Database-query languages
Command languages

4

Command Language Examples

Web addresses:
http://www.ccse.kfupm.edu.sa/~jauhar

Unix commands
To delete blank lines from a file

grep –v ^$ filea > fileb

To print on a laser printer (in a particular installation)
CP TAG DEV E VTSO LOCAL 2 OPTCD=J F=3871 X=GB12

The development of new command languages has
slowed dramatically due to the emergence of direct-
manipulation and menu-selection interfaces
but still there are millions of users of command languages

5

Good Command Languages

Command languages should be designed to suit
the users’ operation
They should have some structure

hierarchical, concatenation

Meaningful structure is highly beneficial
Permitting abbreviations maybe useful
Feedback should be generated for acceptable
and unacceptable commands

6

Functionality to Support User’s Tasks

Users do wide range of work:
text editing, electronic mail, financial management,
airline or hotel reservations, inventory,
manufacturing process control, gaming, and so on.

People will use a computer system if it gives
them powers not otherwise available.
If the power is attractive enough, people will use
a system despite a poor user interface
Therefore, the first step for the designer is to
determine the functionality of the system by
studying the users’ task domain.

7

► Functionality to Support User’s Tasks

Providing excessive functionality is a common design
error;

it slows learning,
increases the chances of error,
requires longer manuals, and more help screens

On the other hand, insufficient functionality may leave the
user frustrated because desired functionality may not be
supported
Careful task analysis might result in a table of user
communities and tasks, with each entry indicating
expected frequency

Make high-volume tasks easy to carry out
evaluate destructive actions to ensure reversibility, or at least are
protected from accidental invocation

8

Command-Organization Strategies

Simple command set
Each command is chosen to carry out a single task. The number
of commands match the number of tasks.

Example:
In the vi editor of Unix

fx find the character x going forward
Fx find the character x going backward

For small number of tasks, this can produce a system easy to
learn and use. However, large number of commands may result
confusion.

9

► Command-Organization Strategies

Command plus arguments/options
Follow each command by one or more arguments that indicate objects to
be manipulated, e.g.

COPY FILEA, FILEB
DELETE FILEA

Keyword labels for arguments are helpful for some users, e.g.
COPY FROM=FILEA TO=FILEB

Commands may also have options to indicate special cases, e.g.
PRINT/3,HQ FILEA
PRINT (3, HQ) FILEA

Error rates and the need for extensive training increase with the number
of possible options
Frequent users appreciate compact commands

A0821DCALGA0300P
Checking seat availability on a flight on August 21, from Washington’s
National Airport (DCA) to New York’s LaGuardia Airport (LGA) at about
3:00P.M.

10

► Command-Organization Strategies

Hierarchical command structure
The full set of commands is
organized into a tree structure

First level: command action
Second level: object argument
Third level: destination argument

It offers a meaningful structure to a
large number of commands

5x3x4 = 60 tasks with 5 command
names and 1 rule of formation

Action Object Destination
CREATE File File

DISPLAY Process Local printer

REMOVE Directory Screen

COPY Remote
printer

MOVE

11

The Benefits of Structure:
Consistent Argument Ordering

Human learning, problem solving, and memory are greatly
facilitated by meaningful structure.

Studies have shown that users perform significantly
faster with consistent argument ordering

Inconsistent order of arguments Consistent order of arguments

SEARCH file no, message id
TRIM message id, segment size
REPLACE message id, code no
INVERT group size, message id

SEARCH message id, file no
TRIM message id, segment size
REPLACE message id, code no
INVERT message id, group size

12

The Benefits of Structure:
Symbols versus keywords

Symbol Editor Keyword Editor

FIND:/TOOTH/;-1 BACKWARD TO "TOOTH"

LIST;10 LIST 10 LINES

RS:/KO/,/OK/;* CHANGE ALL "KO" TO "OK"

Experiments show that performance improved in
using keywords instead of symbols

13

The Benefits of Structure:
Hierarchical structure and congruence

Carroll
(1982)

14

► The Benefits of Structure:
Hierarchical structure and congruence

Congruence helped to remember the natural pairs of
concepts and terms
The hierarchical structure enabled subjects to master many
commands with few keywords and one rule of formation.
Retention should be facilitated by hierarchical structure and
congruence

Sources of structure that have proved advantageous
include:

Positional consistency
Grammatical consistency
Congruent pairing
Hierarchical form

15

Naming and Abbreviations

There is often a lack of consistency or obvious strategy for
construction of command abbreviations.

e.g., Unix commands: cp, ls, mkdir, cd, rm, pwd, …

Specificity Versus Generality:
Specific terms can be more descriptive, and if they are more
distinctive, they maybe more memorable

Infrequent, discriminating words insert delete

Frequent, discriminating words add remove

Infrequent, nondiscriminating words amble perceive

Frequent, nondiscriminating words walk view

General words (frequent, nondiscriminating) alter correct

Nondiscriminating nonwords (nonsense) GAC MIK
Discriminating nonwords (icons) abc-adbc abc-ab

16

Abbreviation Strategies

Command names should not only be meaningful
for human learning and retention, they must also
be in harmony with the mechanism for expressing
them to the computer

commands should be easy to type fast and without
errors

SHIFT or CTRL keys maybe difficult to type

novice users prefer full command names
short commands are appreciated by power users
sometimes, when both short & full command names
are provided, users prefer to use the full ones

17

► Abbreviation Strategies

1. Simple truncation: The first, second, third, etc.
letters of each command.

2. Vowel drop with simple truncation: Eliminate
vowels and use some of what remains.

3. First and last letter: Since the first and last letters
are highly visible, use them.

4. First letter of each word in a phrase. Acronym
technique

5. Standard abbreviations from other contexts: Use
familiar abbreviations.

6. Phonics: Focus attention on the sound.

Six potential strategies for abbreviations:

18

Guidelines for using abbreviations

Ehrenreich and Porcu (1982) offer this set of guidelines:
A simple primary rule should be used to generate abbreviations for most items;
a simple secondary rule should be used for those items where there is a
conflict.
Abbreviations generated by the secondary rule should have a marker (for
example, an asterisk) incorporated in them.
The number of words abbreviated by the secondary rule should be kept to a
minimum.
Users should be familiar with the rules used to generate abbreviations.
Truncation should be used because it is an easy rule for users to comprehend
and remember. However, when it produces a large number of identical
abbreviations for different words, adjustments must be found.
Fixed-length abbreviations should be used in preference to variable-length
ones.
Abbreviations should not be designed to incorporate endings (ING, ED, S).
Unless there is a critical space problem, abbreviations should not be used in
messages generated by the computer and read by the user.

19

Commands menus and keyboard shortcuts

To relieve the burden of memorization of
commands, some designers offer users brief
prompts to available commands, in a format
called command menu

Example:
H)elp O)ptions P)rint G)o M)ain Screen Q)uit

Good for expert and intermittent users. Not much
useful for novices.

Keyboard shortcuts in most GUIs become a kind
of menu for experienced users

20

Skipped section

The following section has been
skipped

8.6 Natural Language in
Computing

