
ICS 353: Design and Analysis of Algorithms

Dr. Nasir Al-Darwish

Computer Science Department

King Fahd University of Petroleum and Minerals

darwish@kfupm.edu.sa

Summer Term 2014 (2013-3)

Overview of Algorithms

KFUPM: Dr. Al-Darwish © 2014 1

The Field of Algorithms

 The field of algorithms, as a branch of computer science and modern
mathematics, focuses on developing and formalizing problem-solving
techniques.

 Definition: An algorithm is a step-by-step procedure for solving a problem
by computer.

 The term “algorithm” is in reference to the Persian mathematician Al-
Khwarizmi (780-850) — Al Khwarizmi’s book Hisab al-jabr w’al-muqabala
is the first known book on algebra.

 The concept of an algorithm originated as a means of recording procedures
for solving mathematical problems such as finding the common divisors of
two integers or multiplying two numbers.

 One of the oldest (and useful) algorithms, is Euclid’s GCD algorithm for
finding the greatest common divisor of two integers.

 The study and development of algorithms became a scientific endeavor with
the invention of digital computers in the late 1940s and early 1950s, because
computers can be programmed to process data and execute logical and
arithmetic calculations at high speeds.

KFUPM: Dr. Al-Darwish © 2014 2

Algorithm Development: Pseudocode

 Today’s computers are designed to compile and execute programs
written in some high-level programming language such as C or Java.

 However, because algorithms are intended to be read and understood
by humans, algorithms are better expressed in pseudocode.

 Pseudocode uses a mix of English, abstract mathematical notation
and high-level programming language constructs (such as variable
assignment and flow-control statements).

 Describing an algorithm in pseudocode frees the algorithm designer
from worrying about the specific syntax of a particular programming
language. Also, it is easier to analyze the algorithm and reason about
its correctness when it is expressed using as simple notation as
possible.

 Algorithm development is not an end of itself. It is just a means to
efficiently solve a problem by computer.

KFUPM: Dr. Al-Darwish © 2014 3

Algorithm Development: Design vs. Analysis

 The study of algorithms evolves around two interrelated tasks: design and
analysis.

 The design of an algorithm for a given problem simply means to develop
a procedure (normally expressed in pseudocode) that manipulates the
problem’s input to obtain the desired output.

 This is followed up by the algorithm analysis task whose goal is to quantify
the algorithm’s running time (or memory space usage) as a function of
input size.

 These tasks are interrelated because the results of the analysis often lead the
algorithm designer to rethink and modify his algorithm.

 The final form of an algorithm is its embodiment in a computer program,
which gives a materialistic assurance of its utility, efficiency, and correctness.

 Recognition of the importance of algorithms has led Donald Knuth to state,
“Computer Science is the study of algorithms” [Knu74].

 [Knu74] Knuth, D.E. Computer Science and Its Relation to Mathematics, The
American Mathematical Monthly, vol. 81, No. 4 (Apr., 1974), pp. 323-343.

KFUPM: Dr. Al-Darwish © 2014 4

Means of Describing (Expressing) Algorithms

 The process of developing an algorithm for some given problem begins with
characterizing the problem input and output, which represent a level of
abstraction (approximate model) of reality.

 An algorithm is then a procedure (and eventually a computer program) that
manipulates the problem’s input in order to produce the desired output.

 The following various means are used to express an algorithm and convey it
to its intended readers:

 Textual and pictorial description: used to explain the idea and/or logic of
the algorithm and any data structures needed for efficient implementation

 Pseudocode: a standard way to express algorithms, Java-like code

 Mathematical equations: a common and formal way to express an
algorithm (or some of its parts)

 Program flowcharts (outdated)

KFUPM: Dr. Al-Darwish © 2014 5

Describing Algorithms: Pseudocode

 Pseudocode uses a mix of English, mathematical notation and high-level
programming language constructs (such as variable assignment and flow
control statements).

 Algorithm statements are expressed using Pascal-like (or Java-like) syntax
but with relaxed syntactic rules.

 Use line breaks instead of semicolons to separate statements

 Use variables without explicitly declaration of the variable’s data-type

 Use high-level operations (like the construct A  B, to mean copy array B
to array A) that have no corresponding constructs in typical programming
languages.

KFUPM: Dr. Al-Darwish © 2014 6

Describing Algorithms: Pseudocode

 The following table shows examples of CSharp/Java program statements
and the alternative forms used in pseudocode.

Csharp/Java Program Statement Alternative Form Used in Pseudocode

int a = 10; a  10

if (a==b) S1 else S2; if a=b then S1 else S2

for(int i=1; i <= n; i++)

{ S1; S2; }

for i = 1 to n

 S1

 S2

end for

while ((a != b) && (c <= d))

{ S1; S2; }

while (a  b) and (c  d)

 S1

 S2

end while

KFUPM: Dr. Al-Darwish © 2014 7

Describing Algorithms: Mathematical Equations, Euclid’s GCD

 Mathematical equations (functions) are handy in defining recursive algorithms
— a definition is recursive if it exhibits a self-reference.

 A recursive definition (formulation) normally utilizes two equations:
a recursive equation and a base (nonrecursive) equation.

 Normally, the base equation deals with special (or small) inputs for which the
solution can be specified directly.

 Example: Euclid’s GCD algorithm for computing the greatest common divisor
(gcd) of two positive integers a, b where a ≥ b. The algorithm is specified by
these equations (a mod b is the remainder of division of a by b):

 GCD-Example (2 is GCD of 82 and 12):

 gcd(82,12)=gcd(12, 82 mod 12)=gcd(12,10)=gcd(10, 12 mod 10)=gcd(10,2)=2.

 The above lines simply corresponds to the (recursive) calls that takes place.
http://faculty.kfupm.edu.sa/ics/darwish/JS_AlgorithmAnimation/gcd_animated.htm

gcd(a,b) = b if a mod b = 0* (1) // Base Eq.

gcd(a,b) = gcd(b, a mod b) if a mod b > 0 (2)

*This is same as if b divides a (or a is divisible by b)

http://faculty.kfupm.edu.sa/ics/darwish/JS_AlgorithmAnimation/gcd_animated.htm
http://faculty.kfupm.edu.sa/ics/darwish/JS_AlgorithmAnimation/gcd_animated.htm
http://faculty.kfupm.edu.sa/ics/darwish/JS_AlgorithmAnimation/gcd_animated.htm

KFUPM: Dr. Al-Darwish © 2014 8

GCD in Pseudocode: Java/CSharp, JavaScript

 Translating an algorithm specified by recursive equations into pseudocode
is often straightforward and purely mechanical.

 We merely rewrite the equations using a different syntax. For example,
based on the previous equations, we can express the preceding GCD

algorithm as follows :

 int gcd(int a, int b) // GCD in Java/CSharp

{ // returns the GCD of the positive integers a and b (a > b)

 if (a % b == 0) return b; // Base equation

 else return gcd(b, a % b); // Recursive equation

}

// GCD in JavaScript

function gcd(a, b)

{ // returns the GCD of the positive integers a and b (a > b)

 if (a % b == 0) return b; // Base equation

 else return gcd(b, a % b); // Recursive equation

}

KFUPM: Dr. Al-Darwish © 2014 9

 Euclid’s GCD: Termination

 Important Note: To guarantee termination, the recursive equation
must decrease the values of its input parameters to eventually reach
the parameter-values handled by the base equation.

 For the GCD algorithm, observe that the first parameter is decreased
from a to b, because we have assumed that a ≥ b, and the second
parameter is decreased from b to (a mod b), because division of a by b
always leaves a remainder < b.

KFUPM: Dr. Al-Darwish © 2014 10

Algorithm-Design Guidelines

 We summarize certain guidelines (or blueprints) that govern the
process of algorithm development. These guidelines translate into
desirable characteristics that should be exhibited by the algorithm
pseudocode-description.

 Modularity

 Readability

 Correctness

 Time and space efficiency

 These characteristics, together, ensure that the algorithm can be
properly analyzed, make it easier to prove the algorithm correct,
ease the manual process of translating the algorithm into a
computer program, and, finally, ensure that the algorithm, timewise
(and spacewise), is practical.

KFUPM: Dr. Al-Darwish © 2014 11

Algorithm-Design Guidelines: Modularity

 Modularity is an important principle in system design, where a large complex
structure is constructed from smaller (simpler) building blocks.

 Using this principle in algorithm design, an algorithm is evolved by a process
of stepwise refinement.

 This means that the initial description is composed of high-level steps. Then
each of these high-level steps is expanded into simpler, more refined steps.

 The process is repeated until the description has enough details that it can be
translated into a computer program in a non-ambiguous way using moderate
effort. The process is generally known as the top-down design principle.

 Modularity calls for dividing a large monolithic description into a number of
smaller-sized procedures, where each procedure embodies some specific
functionality.

 Note: In the context of high-level programming languages, the term module
is used as a synonym for a class, which defines some type of object and its
behavior as a set of program functions.

KFUPM: Dr. Al-Darwish © 2014 12

Algorithm-Design Guidelines: Readability

 It is essential that the algorithm pseudocode-description be readable.

 Readability is achieved by

 Using meaningful variable names,

 Using indentation to indicate nesting of compound statements such as
nested-loop structures, and

 Using comments to annotate (and explain the actions of) various parts of
the algorithm.

KFUPM: Dr. Al-Darwish © 2014 13

Algorithm-Design Guidelines: Correctness

 It is essential that an algorithm for a given problem produce the
correct output for all possible inputs (problem instances).

 Often it is not feasible to ensure the algorithm correctness by testing
the algorithm on an instance-by-instance basis, as there could be
a large number of problem instances; rather, a mathematical proof
of correctness must be given.

 As we will see later, algorithms developed by induction (a well-
known algorithm-design technique) embody their own proof of
correctness.

 Another algorithm proof method employs the concept of a loop
invariant, which is an assertion about a for-loop (or a while-loop)
block that remains valid in every iteration of the loop.

KFUPM: Dr. Al-Darwish © 2014 14

Algorithm-Design Guidelines: Time and space efficiency

 Computer processor time (i.e., time spent by the CPU executing

a program) and computer memory are considered precious and
scarce resources that ought to be used efficiently.

 This is because in reality a computer is always shared among many
competing tasks and is rarely dedicated to executing a single task.

 Often, computer time is viewed as a more precious resource than
computer memory because computer time is human time, as there
is always a person waiting for a running program to finish.

 Therefore, for solving a given problem, we always seek a fast
algorithm that uses a reasonable amount of computer memory.

KFUPM: Dr. Al-Darwish © 2014 15

Can we use JavaScript for coding algorithms?

 JavaScript is a “scripting” programming language.

 JavaScript execution uses “interpreted” code, instead of “compiled”
code. Thus, it is slower in comparison with Java or CSharp.

 It is limited in features for security reasons; for example, JavaScript
cannot access files on the user’s hard-disk.

 The really nice thing about JavaScript is that it runs within a web
browsers

 Fully supported by all modern browsers

 The program interface can be easily built using HTML

 HTML DOM provides a standardized way of manipulating HTML

 JavaScript has proven to be an “enabling technology”. It allows for
quick development and experimentation of “awesome” ideas.

 Algorithm Animation: http://faculty.kfupm.edu.sa/ics/darwish/ICS353-

Summer2014/links.htm

 D3 (Data Driven Documents): http://bl.ocks.org/mbostock/3750558

http://faculty.kfupm.edu.sa/ics/darwish/ICS353-Summer2014/links.htm
http://faculty.kfupm.edu.sa/ics/darwish/ICS353-Summer2014/links.htm
http://faculty.kfupm.edu.sa/ics/darwish/ICS353-Summer2014/links.htm
http://faculty.kfupm.edu.sa/ics/darwish/ICS353-Summer2014/links.htm
http://faculty.kfupm.edu.sa/ics/darwish/ICS353-Summer2014/links.htm
http://faculty.kfupm.edu.sa/ics/darwish/ICS353-Summer2014/links.htm
http://faculty.kfupm.edu.sa/ics/darwish/ICS353-Summer2014/links.htm
http://bl.ocks.org/mbostock/3750558
http://bl.ocks.org/mbostock/3750558
http://bl.ocks.org/mbostock/3750558

KFUPM: Dr. Al-Darwish © 2014 16

Sequential Search in JavaScript

<script type = "text/javascript"> // Place script within Head section

function ExecuteSearch()

{ var A = [4,8,13,17,19,22,25,35,39,41,49,53,59,67,69,75,78,83,90,99];

 var searchKey = inputVal.value;

 alert("input key=" + searchKey);

 console.log("input key=" + searchKey);

 // searchKey = parseInt(searchKey); // not needed

 var position = Search(A, searchKey);

 if (position != -1)

 result.value = "The number is found at position " + position;

 else result.value = "The number is not found";

}

// Search array A for the specified "key" value

function Search(A, key)

{ for (var i = 0; i < A.length; i++)

 { if (A[i] == key) return i; }

 return -1;

}

</script>

// ... Some HTML goes here

<p>Enter an integer between 0 and 100

<input id="inputVal" type="text" />

<input type="button" value="Search" onclick="ExecuteSearch()" />

<p>Result
<input id= "result" type="text" size="40" />

KFUPM: Dr. Al-Darwish © 2014 17

Prerequisites for Effective use of JavaScript
 Some good books/links on JavaScript can be found on at

http://faculty.kfupm.edu.sa/ics/darwish/SWE363-Fall2013/

 Know HTML DOM and Event Handling. A good book is
DOM Enlightenment (http://domenlightenment.com/)

 Know how to debug scripts using the Brower’s Developer Tools (Hit F12 or
choose Inspect Element from context menu). For Google’s Chrome,
https://developer.chrome.com/devtools/docs/javascript-debugging

 You can develop and publish JS code at places like: jsfiddle, codepen,
liveweave, jsbin

 Other JavaScript Issues

 The division operator always produces a fractional number even if operands are
integers (use Math.floor() to truncate the result)

 Variables inside the body of a function not declared with “var” are treated as global
(they exist after the function returns).

 Always declare program variables using “var”. The lack of it can cause bugs,
especially for recursive functions.

 To force explicit declaration, add the line "use strict"; to the start of your script.

http://faculty.kfupm.edu.sa/ics/darwish/SWE363-Fall2013/
http://faculty.kfupm.edu.sa/ics/darwish/SWE363-Fall2013/
http://faculty.kfupm.edu.sa/ics/darwish/SWE363-Fall2013/
http://faculty.kfupm.edu.sa/ics/darwish/SWE363-Fall2013/
http://faculty.kfupm.edu.sa/ics/darwish/SWE363-Fall2013/
http://faculty.kfupm.edu.sa/ics/darwish/SWE363-Fall2013/
http://faculty.kfupm.edu.sa/ics/darwish/SWE363-Fall2013/
http://domenlightenment.com/
http://domenlightenment.com/
http://domenlightenment.com/
https://developer.chrome.com/devtools/docs/javascript-debugging
https://developer.chrome.com/devtools/docs/javascript-debugging
https://developer.chrome.com/devtools/docs/javascript-debugging
https://developer.chrome.com/devtools/docs/javascript-debugging
https://developer.chrome.com/devtools/docs/javascript-debugging
http://jsfiddle.net/
http://codepen.io/
http://liveweave.com/
http://jsbin.com/

