
1

INTERNET & WEB INTERNET & WEB

APPLICATION DEVELOPMENT APPLICATION DEVELOPMENT

SWE 444SWE 444

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Fall Semester 2008-2009 (081)

Module 4 (IV): XPath

KFUPM-081© Dr. El-Alfy

Objectives/OutlineObjectives/Outline

4.2SWE 444 Internet & Web Application Development

Objectives
◦ Learn the role of XPath

and how to use it

Outline
◦ What is XPath?

◦ Terminology

◦ Attributes

◦ Axes

◦ Arithmetic Expressions

◦ Equality Tests

◦ Boolean Operators

◦ Functions

2

KFUPM-081© Dr. El-Alfy

Three Parts of XSLThree Parts of XSL

XSLT: Transformation Language
XSL-FO: An XML vocabulary for specifying
formatting semantics
Xpath: A language for addressing parts of an XML
document
◦ XQuery and XPointer are both built on XPath expressions

4.3SWE 444 Internet & Web Application Development

XPath

XSLT

XSL-FO

XSL

KFUPM-081© Dr. El-Alfy

What is What is XPathXPath??

XPath is a syntax for selecting parts of an XML document
◦ The way XPath describes paths to elements is similar to the way

an operating system describes paths to files

XPath uses path expressions to navigate in XML
documents
◦ select nodes or node-sets in an XML document; look very much

like the expressions used with a traditional computer file system

XPath contains a library of standard functions
◦ over 100 built-in functions; there are functions for string values,

numeric values, date and time comparison, node manipulation,
sequence manipulation, Boolean values, etc.

XPath is a major element in XSLT
XPath is a W3C recommendation
◦ http://www.w3.org/TR/xpath

4.4SWE 444 Internet & Web Application Development

3

KFUPM-081© Dr. El-Alfy

TerminologyTerminology

4.5SWE 444 Internet & Web Application Development

<library>
<book>

<chapter>
</chapter>

<chapter>
<section>

<paragraph/>
<paragraph/>

</section>
</chapter>

</book>
</library>

library is the parent of book; book is the
parent of the two chapters

The two chapters are the children of
book, and the section is the child of the
second chapter

The two chapters of the book are
siblings (they have the same parent)

library, book, and the second chapter
are the ancestors of the section

The two chapters, the section, and the
two paragraphs are the descendents of
the book

KFUPM-081© Dr. El-Alfy

PathsPaths

4.6SWE 444 Internet & Web Application Development

/library = the root element (if named
library)

Operating system: XPath:

/ = the root directory

/users/dave/foo = the
file named foo in dave in
users

/library/book/chapter/section = every
section element in a chapter in every
book in the library

. = the current directory . = the current element

.. = the parent directory .. = parent of the current element

/users/dave/* = all the files in
/users/dave

/library/book/chapter/* = all the
elements in /library/book/chapter

foo = the file named foo in the
current directory

section = every section element that
is a child of the current element

4

KFUPM-081© Dr. El-Alfy

SlashesSlashes
A path that begins with a / represents an absolute
path, starting from the top of the document
◦ Example: /email/message/header/from
◦ Note that even an absolute path can select more than one

element
A slash by itself means “the whole document”
A path that does not begin with a / represents a
path starting from the current element
◦ Example: header/from
A path that begins with // can start from anywhere
in the document
◦ Example: //header/from selects every element from that is a

child of an element header
◦ This can be expensive, since it involves searching the entire

document

4.7SWE 444 Internet & Web Application Development

KFUPM-081© Dr. El-Alfy

Brackets and Brackets and last()last()

A number in brackets selects a particular matching
child, e.g.
◦ /library/book[1] selects the first book of the library
◦ //chapter/section[2] selects the second section of every

chapter in the XML document
◦ //book/chapter[1]/section[2]
◦ Only matching elements are counted; for example, if a book

has both sections and exercises, the latter are ignored when
counting sections

The function last() in brackets selects the last
matching child
◦ Example: /library/book/chapter[last()]

You can even do simple arithmetic
◦ Example: /library/book/chapter[last()-1]

4.8SWE 444 Internet & Web Application Development

5

KFUPM-081© Dr. El-Alfy

StarsStars

A star, or asterisk, is a “wild card”--it means “all
the elements at this level”
Examples
◦ /library/book/chapter/* selects every child of every

chapter of every book in the library
◦ //book/* selects every child of every book (chapters,

tableOfContents, index, etc.)
◦ /*/*/*/paragraph selects every paragraph that has

exactly three ancestors
◦ //* selects every element in the entire document

4.9SWE 444 Internet & Web Application Development

KFUPM-081© Dr. El-Alfy

AttributesAttributes
You can select attributes by themselves, or elements
that have certain attributes
◦ Remember: an attribute consists of a name-value pair, for

example in <chapter num="5">, the attribute is named num
To choose the attribute itself, prefix the name with
@
Examples
◦ @num will choose every attribute named num
◦ //@* will choose every attribute, everywhere in the

document
To choose elements that have a given attribute, put
the attribute name in square brackets, e.g.
◦ //chapter[@num] will select every chapter element

(anywhere in the document) that has an attribute named
num

4.10SWE 444 Internet & Web Application Development

6

KFUPM-081© Dr. El-Alfy

Attributes (cont.)Attributes (cont.)

//chapter[@num] selects every chapter element
with an attribute num
//chapter[not(@num)] selects every chapter
element that does not have a num attribute
//chapter[@*] selects every chapter element that
has any attribute
//chapter[not(@*)] selects every chapter element
with no attributes

4.11SWE 444 Internet & Web Application Development

KFUPM-081© Dr. El-Alfy

Attributes (cont.)Attributes (cont.)

Values of attributes
◦ //chapter[@num='3'] selects every chapter element

with an attribute num with value 3
◦ The normalize-space() function can be used to remove

leading and trailing spaces from a value before
comparison, e.g.

//chapter[normalize-space(@num)="3"]

4.12SWE 444 Internet & Web Application Development

7

KFUPM-081© Dr. El-Alfy

AxesAxes

An axis (plural axes) is a set of nodes relative to a given
node; X::Y means “choose Y from the X axis”
◦ self:: is the set of current nodes (not too useful)

self::node() is the current node

◦ child:: is the default, so /child::X is the same as /X
◦ parent:: is the parent of the current node
◦ ancestor:: is all ancestors of the current node, up to and

including the root
◦ descendant:: is all descendants of the current node

(Note: never contains attribute or namespace nodes)
◦ preceding:: is everything before the current node in the entire

XML document, not including ancestors
◦ following:: is everything after the current node in the entire XML

document, not including descendants

4.13SWE 444 Internet & Web Application Development

KFUPM-081© Dr. El-Alfy

Axes (outline view)Axes (outline view)

4.14SWE 444 Internet & Web Application Development

//chapter[2]/self::*

//chapter[2]/preceding::*

//chapter[2]/following::*

//chapter[2]/ancestor::*

//chapter[2]/descendant::*

Starting from a given node, the self, preceding, following, ancestor, and
descendant axes form a partition of all the nodes (if we ignore attribute and
namespace nodes)

 <library>
<book>

<chapter />
<chapter>

<section>
<paragraph />
<paragraph />

</section>
</chapter>
<chapter />

</book>
<book />

</library>

8

KFUPM-081© Dr. El-Alfy

Axes (tree view)Axes (tree view)

4.15SWE 444 Internet & Web Application Development

Starting from a given node, the self, preceding, following, ancestor,
and descendant axes form a partition of all the nodes (if we ignore
attribute and namespace nodes)

preceding

paragraph[1] paragraph[2]

section[1]

chapter[2]chapter[1] chapter[3]

book[1] book[2]

library

self

ancestor

descendant

following

KFUPM-081© Dr. El-Alfy

Axis ExamplesAxis Examples

//book/descendant::*
◦ is all descendants of every book
//book/descendant::section
◦ is all section descendants of every book
//parent::*
◦ is every element that is a parent, i.e., is not a leaf
//section/parent::*
◦ is every parent of a section element
//parent::chapter
◦ is every chapter that is a parent, i.e., has children
/library/book[3]/following::*
◦ is everything after the third book in the library

4.16SWE 444 Internet & Web Application Development

9

KFUPM-081© Dr. El-Alfy

Axis Examples (cont.)Axis Examples (cont.)
ancestor-or-self::
◦ ancestors plus the current node
descendant-or-self::
◦ descendants plus the current node
attribute::
◦ is all attributes of the current node
namespace::
◦ is all namespace nodes of the current node
preceding::
◦ is everything before the current node in the entire XML document
following-sibling::
◦ is all siblings after the current node

Note: preceding-sibling:: and following-sibling:: do not
apply to attribute nodes or namespace nodes

4.17SWE 444 Internet & Web Application Development

KFUPM-081© Dr. El-Alfy

Abbreviations for axesAbbreviations for axes

4.18SWE 444 Internet & Web Application Development

(none) is the same as child::

@ is the same as attribute::

. is the same as self::node()

.. is the same as parent::node()

// is the same as /descendant-or-self::node()/

../X is the same as parent::node()/child::X

.//X is the same as self::node()/descendant-or-self::node()/child::X

//X is the same as /descendant-or-self::node()/child::X

10

KFUPM-081© Dr. El-Alfy

Arithmetic ExpressionsArithmetic Expressions

+ add
- subtract
* multiply
div (not /) divide
mod modulo (remainder)

4.19SWE 444 Internet & Web Application Development

KFUPM-081© Dr. El-Alfy

Equality TestsEquality Tests

= “equals” (Notice it’s not ==)

!= “not equals”

But it’s not that simple!

value = node-set will be true if the node-set contains
any node with a value that matches value
value != node-set will be true if the node-set
contains any node with a value that does not match value

Hence,

value = node-set and value != node-set may both
be true at the same time!

4.20SWE 444 Internet & Web Application Development

11

KFUPM-081© Dr. El-Alfy

Other Boolean OperatorsOther Boolean Operators

and (infix operator)

or (infix operator)

Example: count = 0 or count = 1

not() (function)

The following are used for numerical comparisons
only:

< “less than”
<= “less than or equal to”
> “greater than”
>= “greater than or equal to”

4.21SWE 444 Internet & Web Application Development

KFUPM-081© Dr. El-Alfy

Some Some XPathXPath FunctionsFunctions

XPath contains a number of functions on node sets,
numbers, and strings; here are a few of them:

count(elem) counts the number of selected elements
Example: //chapter[count(section)=1] selects chapters with
exactly one section child

name() returns the name of the element
Example: //*[name()='section'] is the same as //section

starts-with(arg1, arg2) tests if arg1 starts with arg2
Example: //*[starts-with(name(), 'sec')]

contains(arg1, arg2) tests if arg1 contains arg2
Example: //*[contains(name(), 'ect')]

Examples
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

4.22SWE 444 Internet & Web Application Development

12

KFUPM-081© Dr. El-Alfy

Q & AQ & A

?
4.23SWE 444 Internet & Web Application Development

KFUPM-081© Dr. El-Alfy

ReferencesReferences

Some useful links with examples and other resources:
◦ W3C http://www.w3.org/TR/xpath
◦ W3School XPath Tutorial

http://www.w3schools.com/XPath/default.asp

◦ MSXML 4.0 SDK

4.24SWE 444 Internet & Web Application Development

