
1

INTERNET PROTOCOLS AND INTERNET PROTOCOLS AND

CLIENTCLIENT--SERVER PROGRAMMINGSERVER PROGRAMMING

SWESWE344 344 Client

Fall Semester 2008-2009 (081)

Module 3.2: Delegates, Events, GUI and Threads (Part 2)

Internet

Server

re
qu

es
t

re
sp

on
se

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Objectives

Learn about delegates, how to create them and how
to use them.
Learn about special types of delegates calledLearn about special types of delegates called
events.
Learn how to use the standard event handler.
Learn how to write GUI programs.
Learn how to write multi-threaded programs.

2KFUPM: Dr. El-Alfy © 2005 Rev. 2008

2

GUI Programming

In C#, GUI applications are created by extending the
System.Windows.Forms.Form class.
Developing GUI applications involves two things
– Designing the user-interface
– Implementing event-handling

Visual Studio (VS) simplifies the development process

3KFUPM: Dr. El-Alfy © 2005 Rev. 2008

GUI Programming …

Phase 1: Designing the user interface
– In VS, create a new project and specify that you are

creating a Windows Application g pp
– You have two views of your program: Source and Design.

– The design view allows you to create a user interface by
simply dragging the controls from the tools window into

4

p y gg g
your design window

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

3

GUI Programming …

Phase 1: Designing the
user interface …
– Switch to the Design tap,

you will see a blank design
window (Form)

– Open the Tools Window
– Drag the various controls

you desire to the form
design window and
organize them to suit your

Toolbox Tab

Form

5

organize them to suit your
application.

– Use the Properties Window
to change the behavior and
appearance of the controls Properties Tab

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

GUI Programming …

Phase 1: Designing the user interface …
– Some of the properties that are commonly changed

include:
• The variable names automatically generated for the controls
• The text property
• Multi-lines for TextBox (A text box is just a multi-line text field)
• Scrollers for multi-line tools
• Fonts (size, color, appearance, etc.)

6KFUPM: Dr. El-Alfy © 2005 Rev. 2008

4

Sample Example

Design the following user interface

7

Switch to the source code to see the code that will
be automatically generated for the above design

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Sample Example …
1. using System;
2. using System.Windows.Forms;
3. namespace WindowsApp {
4. public class BreakURL : System.Windows.Forms.Form
5. {
6. private System.Windows.Forms.TextBox resultBox;
7. private System.Windows.Forms.TextBox addressBox;
8. private System.Windows.Forms.Button button;
9. private System.Windows.Forms.Label label;
10. public BreakURL(){
11. InitializeComponent();
12. }
13. void InitializeComponent() {
14. this.label = new System.Windows.Forms.Label();
15. this.button = new System.Windows.Forms.Button();
16. this.addressBox = new System.Windows.Forms.TextBox();
17. this.resultBox = new System.Windows.Forms.TextBox();
18 this SuspendLayout();

Component
declarations

Component
Initialization

8

18. this.SuspendLayout();
19. // label
20. this.label.Font = new System.Drawing.Font("Microsoft Sans Serif", 9.75F,
21. System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point,
22. ((System.Byte)(0)));
23. this.label.ForeColor = System.Drawing.SystemColors.ActiveCaption;
24. this.label.Location = new System.Drawing.Point(24, 16);
25. this.label.Name = "label";
26. this.label.Size = new System.Drawing.Size(200, 16);
27. this.label.TabIndex = 0;
28. this.label.Text = "Enter address to break";

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

5

Sample Example …
29. // button
30. this.button.Location = new System.Drawing.Point(328, 40);
31. this.button.Name = "button";
32. this.button.Size = new System.Drawing.Size(88, 23);
33. this.button.TabIndex = 3;
34. this.button.Text = "Break Address";
35. // addressBox
36. this.addressBox.Location = new System.Drawing.Point(24, 40);
37. this.addressBox.Name = "addressBox";
38. this.addressBox.Size = new System.Drawing.Size(280, 20);
39. this.addressBox.TabIndex = 1;
40. this.addressBox.Text = "";
41. // resultBox
42. this.resultBox.BackColor = System.Drawing.Color.White;
43. this.resultBox.Location = new System.Drawing.Point(24, 72);
44. this.resultBox.Multiline = true;
45. this.resultBox.Name = "resultBox";
46 thi ltB S llB S t Wi d F S llB B th

9

46. this.resultBox.ScrollBars = System.Windows.Forms.ScrollBars.Both;
47. this.resultBox.Size = new System.Drawing.Size(280, 80);
48. this.resultBox.TabIndex = 2;
49. this.resultBox.Text = "";

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Sample Example …
50. // CreatedForm
51. this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
52. this.ClientSize = new System.Drawing.Size(432, 182);
53. this.Controls.AddRange(new System.Windows.Forms.Control[] {
54. this.button,
55. this.resultBox,
56. this.addressBox,
57. this.label});
58. this.Name = "CreatedForm";
59. this.ResumeLayout(false);
60. }
61. public void BreakAddress(Object source, EventArgs arg) {
62. }
63.
64. public static void Main() {
65. Application.Run(new BreakURL());
66. }
67 }

EventHandler

Main()

10

67. }
68. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

6

GUI Programming …

Important Note:
– In .NET 2.0 (Visual Studio 2005), the concept of partial

class was introduced.
• This allows a class to be broken into more than one source files.

– When you create a GUI application, the system breaks
your class (Form) into two partial classes, Form.cs and
Form.Designer.cs

– The code generated by the IDE is stored in
Form.Designer.cs. You should not change the code in
this file manually. If you wish to make any changes, use

11

this file manually. If you wish to make any changes, use
the design window.
• The IDE may override your changes if you go back to the design

window.
– Any additional user code should be added inside the

partial class, Form.cs

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

GUI Programming …

Phase 2: Handling Events
– GUIs are event driven
– Event handling model using delegates

– Event handlers

Object A raises event E Delegate for event E

Handler 1 for event E

Handler 3 for event E

Handler 2 for event E
calls

calls

12

Event handlers
• Methods that process events and perform tasks.

– Associated event delegates
• Objects that reference methods
• Contain lists of method references

– Must have same signature and return type

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

7

GUI Programming …

Phase 2: Handling Events …
– Each control has a number of event delegates of type,

EventHandler, to which you can register your event , y g y
handling methods.

– EventHandler delegate expects methods with signature
void MethodName(Object source, EventArgs arg)

– Common events that many of the controls have are:
• Click

13

• Click
• Closed
• Closing
• Leave
• etc.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

GUI Programming …

Phase 2: Handling Events …
– To register for events, select the events tab, , from

within the properties window. p p

Selected event

List of events
supported by
control

Events icon

14

Selected event

Event
description

For each event that
you wish to handle,
type the method name
to be executed when
the event occurs.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

8

GUI Programming …

– If the method does not exist, the system will automatically
create it with an empty body, which you can then fill, e.g.,
in the example above, an empty method:
void BreakAddress(Object source, EventArgs arg)
is created and registered with the Click method of the
button control.

– The final thing you need to do for your program to
t i t t i th d

15

execute is to create a main method.
• In which, the static Run method of the Application class is called,

passing to it, an instance of the form as argument.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Threads

An application consists of a single process but it can have
one or more threads
Threads provide a way to execute different tasks
simultaneously
– The CPU switches back and forth between different threads

Threads do not increase the amount of work your computer
can do but they
– can share the resources more efficiently

• Executing other tasks while one task is waiting for I/O

16

– can help the computer to appear more responsive
• e.g., background printing, spell checking, etc

However, thread scheduling is by nature nondeterministic
and incurs extra overhead
– special attention is needed to avoid resulting problems

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

9

Writing Multi-Threaded Applications
Enclose the code to be executed in a separate thread into a
method with the signature

void MethodName()
C t i t f th S t Th di Th dSt tCreate an instance of the System.Threading.ThreadStart
delegate and pass the method as parameter
Create an instance of the System.Threading.Thread class
and pass the delegate as a parameter
– Once an instance of Thread is created, it can be started by calling its

Start() method.
– It can be suspended and resumed using Suspend() and Resume()

17

– It can be aborted using Abort()
Example

Thread thread1 = new Thread(new ThreadStart(Counter1));

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Sample Example
1. using System;
2. using System.Threading;
3. public class ThreadedCounters {
4. public static void Main(){
5. Thread thread1 = new Thread(new ThreadStart(Counter1));
6 thread1 Start();6. thread1.Start();
7. Thread thread2 = new Thread(new ThreadStart(Counter2));
8. thread2.Start();
9. }
10. public static void Counter1() {
11. for (int i = 0; i<10; i++) {
12. Console.WriteLine("Counter 1: "+i);
13. Thread.Sleep(35);
14. }
15. }
16. public static void Counter2() {
17. for (int i = 0; i<10; i++) {

18

18. Console.WriteLine("Counter 2: "+i);
19. Thread.Sleep(20);
20. }
21. }
22. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

10

Lifetime Cycle of a Thread
A thread object can have many
possible states, e.g.,

– Unstarted: When it is created
– Started: After Start() is called
– Running: When it gets a processor
– Suspended: by calling Suspend ()Suspended: by calling Suspend ()
– A suspended thread is resumed when

the Resume() is called.
– The Sleep method is often used, as

the name implies, to send a thread to
sleep for a specified period of time.

– After the time elapses, the thread
wakes up and continues running
automatically.

– A Thread object should be terminated
when the application exits using
Abort()

These states are members of the

19

These states are members of the
System.Threading.ThreadState
enumeration

State Transition Diagram

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Lifetime Cycle of a Thread …

State Description
Aborted The thread is in the Stopped state.
AbortRequested ThreadAbort() method has been invoked on the thread, but the thread

has not yet received the System.Threading.ThreadAbortException thathas not yet received the System.Threading.ThreadAbortException that
will try to stop it.

Background The thread is being executed as a background thread, as opposed to a
foreground thread. This state is controlled by setting the IsBackground
property of the Thread class.

Running The thread has been started, it is not blocked, and there is no pending
ThreadAbortException.

Stopped The thread has stopped.
StopRequested The thread is being requested to stop This is for internal use only

20

StopRequested The thread is being requested to stop. This is for internal use only.
Suspended The thread has been suspended.
SuspendRequested The thread is being requested to suspend
Unstarted The Thread.Start method has not been invoked on the thread.
WaitSleepJoin The thread is blocked as a result of a call to Wait, Sleep or Join

methods.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

11

More on Threads

Thread class has the IsAlive property that can be
used to inquire about the state of a Thread object.
– If IsAlive property is True, the thread has been startedIf IsAlive property is True, the thread has been started

and has not been aborted.
A thread can also run in background or foreground
– A background thread is the same as a foreground thread,

except that background threads do not prevent a process
from terminating.

21

A Thread is put in background state by setting the
Thread IsBackground property to True.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example

It shows how to use threads to write GUI
applications which are responsive.
Without using thread a GUI control could beWithout using thread, a GUI control could be
inactive while some computation is going on,
which is an undesirable behavior.

22KFUPM: Dr. El-Alfy © 2005 Rev. 2008

12

Example
1. using System;
2. using System.ComponentModel;
3. using System.Drawing;
4. using System.Text;
5. using System.Windows.Forms;
6. using System.Threading;6. using System.Threading;

7. namespace CarRace
8. {
9. public partial class Form1 : Form
10. {
11. int leftX, rightX, X, Y;
12. Thread driver;
13. bool start = false;
14.
15. public Form1()
16. {

23

17. InitializeComponent();
18. Control.CheckForIllegalCrossThreadCalls = false;
19. X = leftX = Bounds.Left;
20. Y = car1.Location.Y;
21. rightX = Bounds.Right;
22. car1.Location = new Point(X, Y);
23. driver = new Thread(new ThreadStart(DriveCar));
24. }

Associate a method with the thread

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example …
25. private void startStop_Click(object sender, EventArgs e) {
26. if (!start) {
27. start = true;
28. startStop.Text = "Stop";
29. if (driver.IsAlive)
30. driver.Resume();

Changes the thread state in
response to button clicks30. driver.Resume();

31. else
32. driver.Start();
33. }
34. else {
35. start = false;
36. startStop.Text = "Start";
37. driver.Suspend();
38. }
39. }
40. void DriveCar() {
41. while (true) {

response to button clicks

24

42. while (X < rightX) {
43. X += 10;
44. car1.Location = new Point(X, Y);
45. Refresh();
46. Thread.Sleep(30);
47. }
48. X = leftX - 100;
49. }
50. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

13

Example …
51. protected override void OnClosing(CancelEventArgs e)
52. {
53. if (driver.IsAlive)
54. if (start)
55. driver.Abort();
56. else56. else
57. {
58. driver.Resume();
59. driver.Abort();
60. }
61. base.OnClosing(e);
62. }
63. }
64. }

25KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Thread Problems

The nondeterministic nature of thread scheduling
can lead to many problems in the code
– Resource contention issues

• Occur when more than one thread needs to modify a certain
object at a time.

• Coordination is needed to resolve these problems
– Deadlocks

• A deadlock occurs when there are two threads each of them
waiting for an object locked by the other

• Handled by modern OS

26

– Race conditions
• A race condition occurs when your code depends on one thread

completing some work before another thread is called however the
second thread starts before the first complete the required work

• Handled by modern OS

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

14

Managing Threads

There are ways to manage the behavior of threads
– Using Lock, Interlocked, Monitor, Mutex classes to

coordinate the activities and resource usage of multiple g p
threads (thread synchronization)

– Using Timer class to run threads at specific intervals
(thread scheduling)

– Using Join method to make one thread wait for another
thread to complete

27KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example

Thread Synchronization
– Consider the Unsafe banking example below

1 using System;1. using System;
2. using System.Threading;
3. public class BankAccount {
4. int balance = 0;
5. public BankAccount(int initial) {
6. balance = initial;
7. }
8. public void Deposit(int amount) {
9. balance+=amount;
10. }
11 bli id Withd (i t t) {

28

11. public void Withdraw(int amount) {
12. balance-=amount;
13. }
14. public int GetBalance() {
15. return balance;
16. }
17. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

15

Example …
18. public class UnsafeBanking {
19. static Random randomizer = new Random();
20. static BankAccount account = new BankAccount(100);
21. public static void Main() {
22. Thread[] banker = new Thread[10];
23. for (int i=0; i<10; i++) {
24. banker[i] = new Thread(new ThreadStart(DepositWithdraw));
25. banker[i].Start();
26. }
27. }
28. public static void DepositWithdraw() {
29. int amount = randomizer.Next(100);
30. account.Deposit(amount);
31. Thread.Sleep(100);
32. account.Withdraw(amount);

the amount being deposited is
the same as the amount

withdrawn, one would expect
the balance to remain

unchanged

29

32. account.Withdraw(amount);
33. Console.WriteLine(account.GetBalance());
34. }
35. }

unchanged

Wrong
output!!

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Using the Monitor Class

The Monitor class provides two static methods,
– Enter method

• used to obtain a lock on an object that the monitor guards and is j g
called before accessing the object.

• If the lock is currently owned by another thread, the thread that
calls Enter blocks—that is, is taken off the processor and placed in
a very efficient wait state—until the lock becomes free.

– Exit method
• frees the lock after the access is complete so that other threads

can access the resource

30

can access the resource.

Example:
– The following uses Enter/Exit methods to synchronize

access to the account object

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

16

Using the Monitor Class …

1. public static void DepositWithdraw() {
2. int amount = randomizer.Next(100);
3. Monitor.Enter(account);
4. try {
5 account Deposit(amount);5. account.Deposit(amount);
6. Thread.Sleep(100);
7. account.Withdraw(amount);
8. Console.WriteLine(account.GetBalance());
9. }
10. finally {
11. Monitor.Exit(account);
12. }
13. }

31

Note that calls to Exit are enclosed in finally blocks to ensure
that they’re executed even when there are exceptions.
Always use finally blocks to exit monitors or else you run the
risk of causing other threads to hang indefinitely.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Using the lock keyword

An alternative to using the Enter/Exit method is to use the
lock keyword around the code that should be accessed by
many threads

1. public static void DepositWithdraw() {
2. int amount = randomizer.Next(100);
3. lock(account) {
4. account.Deposit(amount);
5. Thread.Sleep(100);
6. account.Withdraw(amount);
7 C l W it Li (t G tB l ())

32

7. Console.WriteLine(account.GetBalance());
8. }
9. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

17

Synchronizing Access to Collections
The collections classes in the .NET Framework class library
are not thread-safe.
– For example, when sharing an ArrayList between a reader thread and

a writer thread, it’s important to synchronize access to the ArrayLista writer thread, it s important to synchronize access to the ArrayList
so that one thread can’t read from it while another thread writes to it.

– One way to synchronize access to an ArrayList is to use a monitor or
lock

ArrayList list = new ArrayList ();
// Thread A
lock (list) {

li Add ("F d S ")

33

list.Add ("Fender Stratocaster");
}
// Thread B
lock (list) {

string item = (string) list[list.Count - 1];
}

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Synchronizing Access to Collections
Another approach
– use the Synchronized() method implemented in ArrayList, Hashtable, Queue,

Stack, and selected other standard classes
– It returns a thread-safe wrapper around the object passed to it.

// Create the ArrayList and a thread-safe wrapper for it
ArrayList list = new ArrayList ();
ArrayList safelist = ArrayList.Synchronized (list);
// Thread A
safelist.Add ("Some Item");
// Thread B
string item = (string) safelist[safelist.Count - 1];

34

Advantages
– Using thread-safe wrappers created with the Synchronized() method shifts

the burden of synchronization from your code to the framework
– It can also improve performance because a well-designed wrapper class can

use its knowledge of the underlying class to lock only when necessary.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

18

Resources

MSDN Library
– http://msdn.microsoft.com/en-us/default.aspx

Books
– C# 3.0 The Complete Reference, 3E, 2005
– C# 3.0 in a Nutshell: A Desktop Quick Reference, 2007
– Pro C# 2008 and the .NET 3.5 Platform, 4E, 2007
– C# How to Program, By Deitel

– Richard Blum, C# Network Programming. Sybex 2002.
Lecture notes of previous offerings of SWE344 and ICS343 p g
Some other web sites and books; check the course website
at
– http://faculty.kfupm.edu.sa/ics/alfy/files/teaching/swe344/index.htm

35KFUPM: Dr. El-Alfy © 2005 Rev. 2008

