
1

INTERNET PROTOCOLS AND INTERNET PROTOCOLS AND

CLIENTCLIENT--SERVER PROGRAMMINGSERVER PROGRAMMING

SWESWE344 344 Client

Fall Semester 2008-2009 (081)

Module 3.1: Delegates, Events, GUI and Threads (Part 1)

Internet

Server

re
qu

es
t

re
sp

on
se

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Objectives

Learn about delegates, how to create them and how
to use them.
Learn about special types of delegates calledLearn about special types of delegates called
events.
Learn how to use the standard event handler.
Learn how to write GUI programs.
Learn how to write multi-threaded programs.

2KFUPM: Dr. El-Alfy © 2005 Rev. 2008

2

Delegates
A delegate in C# is similar to a function pointer in C or C++ but unlike
function pointers, delegates are object-oriented, type-safe, and secure
It is a class whose declaration syntax is different from that of a normal
class
It allows a programmer to encapsulate a reference (references) to a
method (methods) inside a delegate object
– For static methods, a delegate object encapsulates the method to be called.
– For instance methods, a delegate object encapsulates both an instance and

a method on the instance
A delegate is named so because when if is invoked, it automatically
invokes all methods associated with it.

3KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example: How to declare, instantiate and
call a delegate?

1. using System;
2. public class DelegateExample {
3. public delegate void PrintingDelegate(String s);
4. public static void Writer1(String s) {
5. Console.WriteLine("From Writer1: "+s);
6. }

Delegate Declaration
6. }
7. public static void Writer2(String s) {
8. Console.WriteLine("From Writer2: "+s);
9. }
10. public static void Main() {
11. PrintingDelegate d = new PrintingDelegate(Writer1);
12. d("Hello There"); Console.WriteLine();
13. d += new PrintingDelegate(Writer2); // add one more method
14. d("Hello There"); Console.WriteLine();
15. MessageWriter mw = new MessageWriter();
16. d+= new PrintingDelegate(mw.WriteMessage); //add instance method
17. d("Hello There"); Console.WriteLine();

Delegate Instantiation

Delegate
invocation

4

18. d-= new PrintingDelegate(Writer1); // remove a method
19. d("Hello There");
20. }
21. }
22. public class MessageWriter {
23. public void WriteMessage(String s) {
24. Console.WriteLine("From MessageWriter: "+s);
25. }

26. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

3

Code Discussion

Delegate declaration
– A delegate is a class, but declared similar to a method.
– A delegate can only hold references to specific methodsA delegate can only hold references to specific methods

(static or instance) that have matched signature and
return type, e.g.,
• PrintingDelegate can only hold references to methods of the form:

[static] void MethodName(String s)

5

– It is usual to declare a delegate as a nested class (but it
can also be declared on its own)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Code Discussion …
Instantiating a delegate
– A delegate object must be created and associated with a particular

method
DelegateType delegateVar = new DelegateType(methodName);DelegateType delegateVar = new DelegateType(methodName);

– The methodName is only the method name without parameters; it
means a reference to the method

Invoking a delegate
– A delegate instance is invoked using the name of the delegate object,

followed by the parenthesized arguments to be passed to referred
methods e g

6

methods, e.g.,
d(string)

– This will automatically call methods associated with the delegate.
– Typically a delegate object is passed to other code that will call the

delegate

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

4

Code Discussion …

Multicast delegates
– A delegate instance can hold references to more than one method.

• Internally represented as a linked list that holds references to the methods
associated with the delegateassociated with the delegate

– A delegate is a subclass of the System.MulticastDelegate class,
which in turn derives from the System.Delegate class.
• A delegate automatically inherits the methods of these classes.
• Check the methods inherited from these classes in the documentation.

– Once a delegate instance has been created, we can assign more
method references to it using the overloaded, += operator, or using
the static Combine() method of the Delegate classthe static Combine() method of the Delegate class.

– Similarly, a method reference can be removed from a delegate
instance using the overloaded, -= operator or using the static
Remove() method of the Delegate class.

• If the methods have return value, then only the returned value from the last methid
will be returned by the delegate

7KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Exception throwing in delegates

If an unhandled exception occurs in one of the
methods on the delegate instance's invocation list,
the remaining methods will not be invoked and thethe remaining methods will not be invoked and the
exception is thrown to the delegate instance's
context

8KFUPM: Dr. El-Alfy © 2005 Rev. 2008

5

Event-Driven Programming

Event Source
– the object which potentially

causes an even to happen
id f t– provides a way for event

consumers to register and
deregister their interest
(event handlers)

Event Consumer
– the object interested in

listening to a particular
event

– Contains a special method
for handling the event

Event Object
– Passed as a parameter to

the event handler method
9KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Event Delegates (Events)
A common application of delegates is in GUI programming where they
are used as call-back methods, e.g.,
– A class representing a GUI control such as the Button class will declare a

public field for a delegate which it will invoke when the button is clicked.
A li ti th t i h t b tifi d h th b tt i li k d ill it– An application that wishes to be notified when the button is clicked will write a
method that should be executed in response to clicking the button and
register it with the delegate field

– When the user clicks the button, the method is automatically executed.
Problems of making the delegate field public.
– False alarm – classes other than the Button class can invoke the delegate
– Canceling registration -- the field can be assigned a new instance by another

class
S l ti

10

Solution
– Use the event modifier when declaring the field
– Then only the class in which it is declared can invoke it.
– other classes can only register themselves with the events using += operator

or cancel their earlier registration using -= operator

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

6

Example
1. using System;
2. public delegate void EngineMonitor(String s);
3. public class Car {
4. private int currentSpeed = 0; private bool isDead = false;
5. private int maxSpeed; private String name;
6. public event EngineMonitor Exploded = null;
7. public event EngineMonitor AboutToExplod = null;
8. public Car(String name, int maxSpeed){
9. this.name = name; this.maxSpeed = maxSpeed;
10. }
11. public void Accelerate(int increment) {
12. if (!isDead) {
13. currentSpeed += increment;
14. if (currentSpeed >= maxSpeed) {
15. isDead = true;
16. if (Exploded != null)
17. Exploded("The car has exploded");
18 }

Invoke the event which
in turn invokes the event
handler methods

11

18. }
19. else if (currentSpeed+20 >= maxSpeed && AboutToExplod != null)
20. AboutToExplod("Dangerous Speed:{0}, about to explode“,currentSpeed);
21. else
22. Console.WriteLine("Current Speed = "+currentSpeed);
23. }
24. else if (Exploded != null)
25. Exploded("The car has exploded");
26. }
27. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example …
1. public class EventExample {
2. public static void Main() {
3. Car myCar = new Car("Corola", 200);

4. //register with event source
5. myCar.Exploded += new EngineMonitor(OnExplod);5. myCar.Exploded + new EngineMonitor(OnExplod);
6. myCar.AboutToExplod += new EngineMonitor(OnAboutToExplod);
7.
8. //speed up
9. for (int i=0; i<10; i++)
10. myCar.Accelerate(20);
11.
12. //cancel registration to events
13. myCar.Exploded -= new EngineMonitor(OnExplod);
14. myCar.AboutToExplod -= new EngineMonitor(OnAboutToExplod);
15. //no response
16. for (int i=0; i<10; i++)

Register event handler
methods to events

12

17. myCar.Accelerate(20);
18. }
19. public static void OnExplod(String s) {
20. Console.WriteLine("Message from car: "+s);
21. }
22. public static void OnAboutToExplod(String s) {
23. Console.WriteLine("Message from car: "+s);
24. }
25. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

7

The Standard Event Handler
Because using delegates to handle events is very common
in GUI programming, C# has defined a special delegate
named EventHandler, which is used by most control classes
to handle eventsto handle events.
The EventHandler delegate signature:

void EventHandler (object source, EventArgs e)

– source is the object that fired the event and e contains any additional
information about the event.

13

– the EventArgs class is a class that does not have any fields that can
be used to pass the event information to the client.

– If there is a need to send event information, the programmer is
expected to create a subclass from EventArgs, in which the desired
fields and methods can be defined.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example

1. using System;
2. public class EventMessage : EventArgs {
3. private string message;
4 public EventMessage(string msg) {4. public EventMessage(string msg) {
5. message = msg;
6. }
7. public string Message {
8. get {return message;}
9. }
10. }

Defining a subclass of the
EventArgs to encapsulate
information about the event

14KFUPM: Dr. El-Alfy © 2005 Rev. 2008

8

Example …
11. public class Car {
12. private int currentSpeed = 0; private bool isDead = false;
13. private int maxSpeed; private String name;
14. public event EventHandler Exploded = null;
15. public event EventHandler AboutToExplod = null;
16. public Car(String name, int maxSpeed){
17 this name = name;17. this.name = name;
18. this.maxSpeed = maxSpeed;
19. }
20. public void Accelerate(int increment) {
21. if (!isDead) {
22. currentSpeed += increment;
23. if (currentSpeed >= maxSpeed) {
24. isDead = true;
25. if (Exploded != null)
26. Exploded(this, new EventMessage("The car has exploded"));
27. }
28. else if (currentSpeed + 20 >= maxSpeed && AboutToExplod != null)

15

(p p p)
29. AboutToExplod(this, new EventMessage("Dangerous Speed:"+
30. currentSpeed+", about to explod"));
31. else
32. Console.WriteLine("Current Speed = "+currentSpeed);
33. }
34. else if (Exploded != null)
35. Exploded(this, new EventMessage("The car has exploded"));
36. }
37. }
38. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example …
11. public class EventExample {
12. public static void Main() {
13. Car myCar = new Car("Corola", 200);
14.
15. //register with event source
16. myCar.Exploded += new EventHandler(OnExplod);
17. myCar.AboutToExplod += new EventHandler(OnAboutToExplod);
18.
19. //speed up
20. for (int i=0; i<10; i++)
21. myCar.Accelerate(20);
22.
23. //cancel registration to events
24. myCar.Exploded -= new EventHandler(OnExplod);
25. myCar.AboutToExplod -= new EventHandler(OnAboutToExplod);
26.
27. //no response
28 f (i t i 0 i<10 i++)

16

28. for (int i=0; i<10; i++)
29. myCar.Accelerate(20);
30. }
31. public static void OnExplod(Object source, EventArgs e) {
32. Console.WriteLine("Message from car: "+((EventMessage)e).Message);
33. }
34. public static void OnAboutToExplod(Object source, EventArgs e) {
35. Console.WriteLine("Message from car: "+((EventMessage)e).Message);
36. }
37. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

9

Resources

MSDN Library
– http://msdn.microsoft.com/en-us/default.aspx

Books
– C# 3.0 The Complete Reference, 3E, 2005
– C# 3.0 in a Nutshell: A Desktop Quick Reference, 2007
– Pro C# 2008 and the .NET 3.5 Platform, 4E, 2007
– C# How to Program, By Deitel

– Richard Blum, C# Network Programming. Sybex 2002.
Lecture notes of previous offerings of SWE344 and ICS343 p g
Some other web sites and books; check the course website
at
– http://faculty.kfupm.edu.sa/ics/alfy/files/teaching/swe344/index.htm

17KFUPM: Dr. El-Alfy © 2005 Rev. 2008

