
1

INTERNET PROTOCOLS AND INTERNET PROTOCOLS AND

CLIENTCLIENT--SERVER PROGRAMMINGSERVER PROGRAMMING

SWESWE344 344 Client

Fall Semester 2008-2009 (081)

Module 12: Broadcasting & Multicasting

Internet

Server

re
qu

es
t

re
sp

on
se

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Objectives

Learn about broadcasting and its advantages over
unicasting
Learn how to write broadcasting applications in C#Learn how to write broadcasting applications in C#
Learn about Multicasting and how it compares with
Broadcasting
Learn about the IP Addresses used for Multicasting
Learn about the Internet Group Management
P t l (IGMP) d f lti ti

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 2

Protocol (IGMP) used for multicasting
Learn how to write multicast applications in C#

2

Introduction
Unicasting is a communication model in which a separate instance
of a message is sent repeatedly to each client.
– Example: Our UDP chat system in the UDP Lab

M lti ti d B d ti d l d t k t ffiMulticasting and Broadcasting models reduce network traffic
by simultaneously delivering a single message to many clients.
– Applications that take advantage of these models include video

conferencing, distance learning, stock quotes, news, etc.

O t M

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 3

One-to-One One-to-Many

What is Broadcasting?
Broadcasting involves the use of a special IP address (the
broadcast address) to send the same packet of information to
all clients that share the same network or subnet.
Broadcasting requires the use of UDP since TCP requires
connections between communicating devices.
IP address format allows two types of broadcast addresses:
local broadcast addresses and global broadcast addresses.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 4

3

What is Broadcasting?...
Local Broadcast Address:

The local broadcast address is used to send broadcast
address to all devices in a particular subnet.
Recall that an IP address consists of two components, the
network part and the host part.
The local broadcast IP address consists of the network
address of a subnet together with all ones (255 in decimal) in
the host part.
– Example, for a class B network: 192.168.0.0, using the default subnet

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 5

mask of 255.255.0.0, the local broadcast address is 192.168.255.255.

If the network is subdivided using subnet mask 255.255.255.0,
then each subnet will have its own local broadcast address.
– Example, the subnet 192.168.200.0 will have the local broadcast

address of 192.168.200.255.

What is Broadcasting?...
Global Broadcast Address:

The global broadcast address was originally intended to allow
a device to send packets to all devices on an inter-network.
– It is the special IP address consisting of all ones: 255.255.255.255.

The reality of the Internet (its popularity and security issues)
dictated that global broadcasting is not feasible due to the
possibility of using it to crash the Internet.
Routers do not send global IP broadcast to other networks
unless specifically configured to do so, which is practically

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 6

p y g p y
never.
Instead, routers silently ignore global broadcast messages,
effectively making it a local broadcast.

4

Writing Broadcast Applications in C#
By default, sockets are not allowed to send broadcast
messages – doing so will cause a Socket Exception.
To send broadcast packets, the broadcast socket option must
be set on the socket using the SetSocketOption method
Socket socket = new Socket(AddressFamily.InterNetwork,

SocketType.Dgram, ProtocolType.Udp);
socket.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.Broadcast, 1); //1 indicates true

OR socket. EnableBroadcast = true; //.NET 2.0

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 7

After the socket option is set, broadcast address and a port
number are then used to create an EndPoint for the broadcast
IPEndPoint endPoint=new IPEndPoint(IPAddress.Broadcast, 9090);
byte[] data = Encoding.ASCII.GetBytes(“test message”);
socket.Send(data, endPoint);

Example 1: Broadcast Echo System
1. using System;
2. using System.Net;
3. using System.Net.Sockets;
4. using System.Text;
5. public class SimpleBroadcastSender {p p
6. public static void Main() {
7. Socket sock = new Socket(AddressFamily.InterNetwork,
8. SocketType.Dgram, ProtocolType.Udp);
9. sock.SetSocketOption(SocketOptionLevel.Socket,
10. SocketOptionName.Broadcast, 1);
11. IPEndPoint endPoint=new IPEndPoint(IPAddress.Broadcast,9090);
12. while (true) {
13. Console.Write("Enter message to broadcast: ");
14. string message = Console.ReadLine();

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 8

15. if (message=="")
16. break;
17. byte[] data = Encoding.ASCII.GetBytes(message);
18. sock.SendTo(data, endPoint);
19. }
20. sock.Close();
21. }
22. }

5

Example 1: Broadcast Echo System …
1. using System;
2. using System.Net;
3. using System.Net.Sockets;
4. using System.Text;
5. public class SimpleBroadcastReceiver {

No special socket option is required to
receive broadcast packets. Just listen
to the broadcast port.

p p
6. public static void Main(){
7. Socket sock = new Socket(AddressFamily.InterNetwork,
8. SocketType.Dgram, ProtocolType.Udp);
9. IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 9090);
10. sock.Bind(localEP);
11. EndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0); //dummy
12. byte[] data; int size;
13. string message;
14. while (true) {

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 9

15. data = new byte[1024];
16. size = sock.ReceiveFrom(data, ref remoteEP);
17. message = Encoding.ASCII.GetString(data, 0, size);
18. Console.WriteLine("received: {0} from: {1}",
19. message, remoteEP.ToString());
20. }
21. }
22. }

Example 2: Broadcast Chat System
In the UDP Lab, we developed a chat system where clients
send their messages to a server, which then broadcast the
message to all known clients.
There were a number of limitations with that chat system:
– The client must send a message to the server before it can be

recognized as a known client.
– The same message is repeatedly sent individually to each client – thus,

wasting bandwidth.
– For each message sent, the server has to search its database to check

if the client is known – an expensive process as the number of clients

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 10

p p
increases.

The next example shows a broadcast chat system that does
not have the above limitations.
– In the example, one program is used both to send and to receive

broadcast messages.

6

Example 2: Broadcast Chat System …

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 11

Example 2: Broadcast Chat System …
1. public partial class Form1 : Form {
2. private Socket sendSocket, receiveSocket;
3. private EndPoint remoteEP, localEP, broadcastEP;

4. public Form1() {

Since this program is
bound to a local end
point, two instances
of it cannot be run on
the same machine. p

5. InitializeComponent();
6. Control.CheckForIllegalCrossThreadCalls = false;
7. remoteEP = new IPEndPoint(IPAddress.Any, 0); //dummy
8. localEP = new IPEndPoint(IPAddress.Any,
9. int.Parse(txtPort.Text));
10. receiveSocket = new Socket(AddressFamily.InterNetwork,
11. SocketType.Dgram, ProtocolType.Udp);
12. receiveSocket.Bind(localEP);
13. broadcastEP = new IPEndPoint(IPAddress.Broadcast,

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 12

14. int.Parse(txtPort.Text));
15. sendSocket = new Socket(AddressFamily.InterNetwork,
16. SocketType.Dgram, ProtocolType.Udp);
17. sendSocket.SetSocketOption(SocketOptionLevel.Socket,
18. SocketOptionName.Broadcast, 1);
19. ThreadPool.QueueUserWorkItem(new WaitCallback(ReceiveData));
20. }

7

Example 2: Broadcast Chat System …
21. void ReceiveData(Object obj)
22. {
23. while (true)
24. {
25 byte[] data = new byte[2048];25. byte[] data = new byte[2048];
26. int recv = receiveSocket.ReceiveFrom(data,
27. SocketFlags.None, ref remoteEP);
28. txtIn.Text += Encoding.ASCII.GetString(data,0,recv)+"";
29. }
30. }

31. private void btnSend_Click(object sender, EventArgs e)
32. {

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 13

33. byte[] data = Encoding.ASCII.GetBytes(txtName.Text +
34. ": " + txtOut.Text);
35. sendSocket.SendTo(data, data.Length, SocketFlags.None,
36. broadcastEP);
37. txtOut.Text = "";
38. }

What is Multicasting?
Broadcasting is an excellent way to send information to all
devices on a subnet. However, it has one serious drawback:
– The broadcast packets are restricted to the local network or subnet.
– Multicasting was designed to address this drawback.

Multicasting allows applications to send a single packet across
networks to a select subset of devices called a multicast
group.
Each multicast group is identified by a single special IP
address (to be discussed next).

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 14

A packet sent with the particular IP address as the destination
address will be received by each member of the group.
Multicast group is a dynamic group. That is, members can join
and leave the group at any time.

8

Multicast IP Addresses
IP multicasting uses a particular range of IP addresses to
designate different multicast groups.
The class D IP addresses in the range: 224.0.0.0 through
239.255.255.255 are used to represent multicast groups.
– However, some of these addresses are reserved for special purposes

as discussed below:

The class D addresses are further divided into different blocks:

Local Control Block:

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 15

Addresses in the range: 224.0.0.0 through 224.0.0.255 are
reserved for used by network protocols on a local network.
– For example, 224.0.0.1 represents all systems on this subnet.

224.0.0.2 represents all routers on this subnet.

Multicast IP Addresses …
Global Scope:

Addresses in the range: 224.0.1.0 through 238.255.255.255
are called globally scoped addresses. That is, they can be
used to multicast data across the Internet.
Global Scope addresses are allocated by Internet Assigned
Numbers Authority (IANA).

Limited Scope:
Addresses in the range 239.0.0.0 through 239.255.255.255

ll d li it d dd

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 16

are called limited scope addresses.
Routers are normally configured to prevent multicast traffic
with these addresses from crossing over the local network.
More detailed information about multicast addresses can be
found at: http://www.iana.org/assignments/multicast-addresses

9

Internet Group Management Protocol (IGMP)

Since Multicast packets can cross over networks, routers must
be involved in forwarding such packets.
IGMP is the protocol used by hosts to register their dynamic
multicast group membership with their local router. It is also
used by routers to discover multicast group members.
A router only forward packets for a particular multicast group to
the local network if members exists for that group.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 17

Internet Group Management Protocol (IGMP) …

Two main versions of the IGMP protocol are in common used:

IGMP Version 1 (RFC 1112)
The following figure shows the format of IGMP version 1 packet.

IGMP Version 1 has just two types of IGMP messages:
– Membership query
– Membership report

Hosts send IGMP membership report to their router to indicate their

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 18

p p
interest in joining a particular multicast group.
Membership query is sent by routers periodically to verify that at least one
host on the subnet is interested in receiving traffic directed to a particular
multicast group.
If there is no reply to three consecutive IGMP membership queries, the
router times-out the group and stops forwarding traffic for the group.

10

Internet Group Management Protocol (IGMP) …

IGMP Version 2 (RFC 2236)
The following shows the format of IGMP version 2 packet.

IGMP Version 2 has four types of IGMP messages:
– Membership query
– Version 1 membership report
– Version 2 membership report
– Leave group

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 19

The main difference with version 1 is that there is a leave group message.
A Host can now inform the local router its intention to leave a group.
– This triggers the router to send membership query to determine if there are any

remaining hosts interested in the group (earlier than the normal query period).
– If there are no replies, the router times-out the group.
– Thus, version 2 can greatly reduce the leave latency compared to version 1.

Writing Multicast Applications in C#
The .NET supports IP multicasting by using Socket options.
There are two socket options that are used to join and to leave
a multicast group respectively.
These options are defined as IP-Level Socket options names,
AddMembership and DropMembership.
The value for each of these options is an instance of the
MulticastOption class.
The MulticastOption class has two constructors as follows:

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 20

MulticastOption(IPAddress
multicastGroup)

IPAddress specifies the multicast group
address. If the machine has more than
one interface, all of them are affected by
the socket option

MulticastOption(IPAddress
mulicatGroup, IPAddress local)

The second address specifies the
interface to be used for the multicast.

11

Example 3: Multicast Receiver
1. using System;
2. using System.Net;
3. using System.Net.Sockets;
4. public class SimpleMulticastReceiver {
5. public static void Main() {p
6. Socket sock = new Socket(AddressFamily.InterNetwork,
7. SocketType.Dgram, ProtocolType.Udp);
8. Console.WriteLine("Ready to receive...");
9. IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 9090);
10. sock.Bind(localEP);
11. sock.SetSocketOption(SocketOptionLevel.IP,
12. SocketOptionName.AddMembership,
13. new MulticastOption(IPAddress.Parse("224.100.0.1")));
14. EndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0); //dummy

SetSocketOption Must be
done after binding

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 21

15. while (true) {
16. byte[] data = new byte[1024];
17. int recv = sock.ReceiveFrom(data, ref remoteEP);
18. string message = Encoding.ASCII.GetString(data, 0, recv);
19. Console.WriteLine("received: {0} from: {1}", message,
20. remoteEP.ToString());
21. }
22. }}

Example 3: Multicast Receiver …
Notes:

The SetSocketOption method must be called after the call to
Bind method.
– This enables the multicast group to be set for a specific IPEndPoint.

Once a socket has been added to a specific multicast group,
the ReceiveFrom method will accept packets destined for each
of the following:
– The IPEndPoint specified in the call to the Bind method.
– The multicast group IP address specified in the MulticastOption

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 22

constructor
– Broadcast packets for the specified IPEndPoint.

Thus, applications are not guaranteed to receive only packets
destined for the multicast group and there is no easy way of
distinguishing these packets.

12

Example 3: Local Multicast Sender
1. using System;
2. using System.Net;
3. using System.Net.Sockets;
4. using System.Text;
5. public class SimpleMulticastSender {p p
6. public static void Main() {
7. Socket sock = new Socket(AddressFamily.InterNetwork,
8. SocketType.Dgram, ProtocolType.Udp);
9. IPEndPoint endPoint = new IPEndPoint(
10. IPAddress.Parse("224.100.0.1"), 9090);
11. String message;
12. while (true) {
13. Console.Write("Enter message to Multicast: ");
14. message = Console.ReadLine();

Nothing special is
required to send
local multicast

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 23

15. if (message=="")
16. break;
17. byte[] data = Encoding.ASCII.GetBytes(message);
18. sock.SendTo(data, endPoint);
19. }
20. sock.Close();
21. }
22. }

local multicast
messages. Just
indicate group
address as target.

Sending Global Multicast Packets
By default, packets sent by a socket have a TTL value of 1.
– Thus, they cannot be forwarded by the router to another network.

To send multicast packets that can traverse multiple routers,
socket options must be set to:
– Join the multicast group
– Increase the TTL value.

TTL value is increased by setting the MulticastTimeToLive
SocketOption, which is an IP-level option.
– The value is a positive integer indicating the number of hops.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 24

As with receiving, MulticastSocketOption must be set after
binding the socket to a local end point.

13

Example 3: Global Multicast Sender
1. public class BetterMulticastSender {
2. public static void Main() {
3. Socket sock = new Socket(AddressFamily.InterNetwork,
4. SocketType.Dgram, ProtocolType.Udp);
5. IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 0);y,
6. sock.Bind(localEP);
7. sock.SetSocketOption(SocketOptionLevel.IP,
8. SocketOptionName.AddMembership,
9. new MulticastOption(IPAddress.Parse("224.100.0.1")));
10. sock.SetSocketOption(SocketOptionLevel.IP,
11. SocketOptionName.MulticastTimeToLive, 50);
12. IPEndPoint multicastEP = new IPEndPoint(
13. IPAddress.Parse("224.100.0.1"), 9090);
14. while (true) { Time To Live (TTL)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 25

15. Console.Write("Enter message to Multicast: ");
16. string message = Console.ReadLine();
17. if (message=="")
18. break;
19. byte[] data = Encoding.ASCII.GetBytes(message);
20. sock.SendTo(data, multicastEP);
21. }
22. sock.Close(); } }

Time To Live (TTL)

Example 4: Using UdpClient class
The UdpClient class supports multicasting by providing the
following methods:

JoinMulticastGroup(IPAddress Join a multicast group identified by
groupIP) groupIP with the TLL value of 1

JoinMulticastGroup(IPAddress
groupIP, int ttl)

Same as above but allows TTL value to
be specified.

DropMulticastGroup(IPAddress
groupIP)

Removes the socket from the multicast
group identified by groupIP

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 26

14

Example 4: Using UdpClient class …
1. using System;
2. using System.Net;
3. using System.Net.Sockets;
4. using System.Text;
5 class UdpClientMulticastReceiver {5. class UdpClientMulticastReceiver {
6. public static void Main() {
7. UdpClient sock = new UdpClient(9050);
8. Console.WriteLine("Ready to receive...");
9. sock.JoinMulticastGroup(IPAddress.Parse("224.100.0.1"), 50);
10. IPEndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0);
11. byte[] data;
12. string message;
13. while (true) {

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 27

14. data = sock.Receive(ref remoteEP);
15. message = Encoding.ASCII.GetString(data, 0, data.Length);
16. Console.WriteLine("received: {0} from: {1}", message,
17. remoteEP.ToString());
18. }
19. }
20. }

Example 4: Using UdpClient class …
1. using System;
2. using System.Net;
3. using System.Net.Sockets;
4. using System.Text;
5 class UdpClientMulticastSender {5. class UdpClientMulticastSender {
6. public static void Main() {
7. UdpClient sock = new UdpClient(9090);
8. IPEndPoint remoteEP = new
9. IPEndPoint(IPAddress.Parse("224.100.0.1"), 9090);
10. while (true) {
11. Console.Write("Enter Message to Multicast: ");
12. string message = Console.ReadLine();
13. if (message == "")

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 28

14. break;
15. byte[] data = Encoding.ASCII.GetBytes(message);
16. sock.Send(data, data.Length, remoteEP);
17. }
18. sock.Close();
19. }
20. }

Note that this sender program can only send to a group
within the local subnet. To send to external groups, the
socket has to join the group and increase the TTL value.

15

Resources

MSDN Library
– http://msdn.microsoft.com/en-us/default.aspx

Books
– Richard Blum, C# Network Programming. Sybex 2002.

Lecture notes of previous offerings of SWE344 and ICS343
Some other web sites and books; check the course website
at
– http://faculty.kfupm.edu.sa/ics/alfy/files/teaching/swe344/index.htm

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 29

