
April 08 1

Distributed Systems

(selected topics from chapter 16 & 18)

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the
textbook and its complementary resources

April 08 2

Objectives/Outline

Objectives
Provide a high-level overview
of distributed systems
Describe various methods for
achieving mutual exclusion in
a distributed system
Present schemes for handling
deadlocks in a distributed
system
Present algorithms used in
case of coordinator failure

Outline
Introduction
Types of Distributed
Operating Systems
Event Ordering
Mutual Exclusion
Deadlock Handling
Election Algorithms

April 08 3

Introduction

Distributed system (DS) is a collection of loosely coupled processors
that do not share memory or clock (i.e. each processor has its own
memory and clock); communicate through a network

Processors are referred to as sites, nodes, computers, machines, hosts
Processors in DS are most likely heterogeneous (i.e. vary in size and
function)

Reasons for distributed systems
1. Resource sharing

sharing and printing files at remote sites
processing information in a distributed database
using remote specialized hardware devices

2. Computation speedup – load sharing
3. Reliability – detect and recover from site failure, function transfer,

reintegrate failed site
4. Communication – message passing
Require mechanisms for process synchronization & communication,
dealing with deadlocks, handling failures not encountered in a
centralized system

16.1

April 08 4

Introduction (cont.)

A general structure of a distributed system

April 08 5

Types of Distributed Operating Systems

Network Operating Systems
Users are aware of multiplicity of machines. Access to resources of
various machines is done explicitly by:

Remote logging into the appropriate remote machine (telnet, ssh)
Transferring data from remote machines to local machines, via FTP

Distributed Operating Systems
Users access remote resources in the same way they access local
resources (seamless manner)
Data migration – transfer data by transferring entire file, or transferring
only those portions of the file necessary for the immediate task
Computation migration – transfer the computation, rather than the data,
across the system
Process migration – execute an entire process, or parts of it, at different
sites

16.2

April 08 6

Types of Distributed Operating Systems (cont.)

Process Migration
Load balancing – distribute processes across network to even
the workload
Computation speedup – subprocesses can run concurrently on
different sites
Hardware preference – process execution may require
specialized processor
Software preference – required software may be available at
only a particular site
Data access – run process remotely, rather than transfer all
data locally

April 08 7

Event Ordering

Happened-before relation (denoted by →)
If A and B are events in the same process, and A was executed
before B, then A → B
If A is the event of sending a message by one process and B is
the event of receiving that message by another process, then A
→ B
If A → B and B → C then A → C (transitive)

Irreflexive relation: since an event can not be
happened-before itself
If two events are not related by → relation, they are
concurrent
If A → B then A can affect B

18.1

April 08 8

Relative Time for Three Concurrent Processes

Space-time diagram
Processes (space)

Ti
m

e

April 08 9

Implementation of →

Associate a timestamp with each system event
Require that for every pair of events A and B, if A → B, then the
timestamp of A is less than the timestamp of B

Within each process Pi a logical clock (LCi) is associated
The logical clock can be implemented as a simple counter that is
incremented between any two successive events executed within a
process

Logical clock is monotonically increasing

A process advances its logical clock when it receives a message
whose timestamp is greater than the current value of its logical clock
If the timestamps of two events A and B are the same, then the
events are concurrent

We may use the process identity numbers to break ties and to create a
total ordering

April 08 10

Mutual Exclusion (ME) in DS

Assumptions
The system consists of n processes; each process Pi resides at a
different processor
Each process has a critical section that requires mutual exclusion

Requirement
If Pi is executing in its critical section, then no other process Pj is
executing in its critical section

We present three algorithms to ensure the mutual
exclusion execution of processes in their critical sections

18.2

April 08 11

ME: Centralized Approach

One of the processes in the system is chosen to coordinate the entry to
the critical section (CS)
A process that wants to enter its CS sends a request message to the
coordinator
The coordinator decides which process can enter the CS next, and its
sends that process a reply message
When the process receives a reply message from the coordinator, it
enters its CS
After exiting its CS, the process sends a release message to the
coordinator and proceeds with its execution
No starvation if the coordinator scheduling policy is fair (e.g. FCFS)
Requires three messages per CS entry: request, reply, and release
Upon failure of the coordinating process, a new process must be
elected as a coordinator, poll all processes to construct request queue

April 08 12

ME: Fully Distributed Approach

When process Pi wants to enter its CS, it generates a
new timestamp (TS), and sends the message request
(Pi, TS) to all other processes in the system
When process Pj receives a request message, it may
reply immediately or it may defer sending a reply back
When process Pi receives a reply message from all other
processes in the system, it can enter its CS
After exiting its CS, the process sends reply messages to
all its deferred requests

April 08 13

Fully Distributed Approach (Cont.)

The decision whether process Pj replies immediately to
a request (Pi , TS) message or defers its reply is based
on three factors:

If Pj is in its CS, then it defers its reply to Pi

If Pj does not want to enter its CS, then it sends a reply
immediately to Pi

If Pj wants to enter its CS but has not yet entered it, then it
compares its own request timestamp with the timestamp TS

If its own request timestamp is greater than TS, then it sends a
reply immediately to Pi (Pi asked first)
Otherwise, the reply is deferred

April 08 14

Fully Distributed Approach (Cont.)

Desirable Behavior
Mutual exclusion is obtained
Freedom from deadlock is ensured
Freedom from starvation is ensured, since entry to the CS is
scheduled according to the timestamp ordering

Which ensures that processes are served in a FCFS order

The number of messages per CS entry is
2 x (n – 1)

the minimum number of required messages per CS entry when
processes act independently and concurrently

April 08 15

Fully Distributed Approach (Cont.)

Three Undesirable Consequences
The processes need to know the identity of all other processes in
the system, which makes the dynamic addition and removal of
processes more complex
If one of the processes fails, then the entire scheme collapses

This can be dealt with by continuously monitoring the state of all the
processes in the system; if one process fails, all others are notified

Processes that have not entered their CS must pause frequently to
assure other processes that they intend to enter the CS

This protocol is therefore suited for small, stable sets of
cooperating processes

April 08 16

ME: Token-Passing Approach

Circulate a token among processes in system
Token is special type of message
Possession of token entitles holder to enter critical section

Processes are logically organized in a ring structure
Unidirectional ring guarantees freedom from starvation
Number of messages per CS entry may vary
Two types of failures

Lost token – election must be called
Failed processes – new logical ring established

April 08 17

Deadlock Prevention and Avoidance

Resource-ordering deadlock-prevention
define a global ordering among the system resources
assign a unique number to all system resources
a process may request a resource with unique number i only if it is
not holding a resource with a unique number greater than i
simple to implement; requires little overhead

Banker’s algorithm for deadlock avoidance
designate one of the processes in the system as the process that
maintains the information necessary to carry out the Banker’s
algorithm (banker)
also implemented easily, but may require too much overhead

18.5

April 08 18

New Time-stamped Deadlock-Prevention Techniques

Each process Pi is assigned a unique priority number
Priority numbers are used to decide whether a process Pi should
wait for a process Pj (if it has a higher priority); otherwise Pi is
rolled back (dies)
The scheme prevents deadlocks

For every edge Pi → Pj in the wait-for graph, Pi has a higher priority
than Pj

Thus a cycle cannot exist

Starvation is possible use timestamp to avoid it
Two complementary deadlock prevention using timestamps

Wait-Die Scheme
Wound-Wait Scheme

April 08 19

Wait-Die Scheme

Based on a nonpreemptive technique

If Pi requests a resource currently held by Pj, Pi is
allowed to wait only if it has a smaller timestamp than
does Pj (Pi is older than Pj)

Otherwise, Pi is rolled back (dies)

Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively

if P1 request a resource held by P2, then P1 will wait
If P3 requests a resource held by P2, then P3 will be rolled back

April 08 20

Wound-Wait Scheme

Based on a preemptive technique; counterpart to the
wait-die system
If Pi requests a resource currently held by Pj, Pi is
allowed to wait only if it has a larger timestamp than
does Pj (Pi is younger than Pj). Otherwise Pj is rolled
back (Pj is wounded by Pi)
Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively

If P1 requests a resource held by P2, then the resource will be
preempted from P2 and P2 will be rolled back
If P3 requests a resource held by P2, then P3 will wait

April 08 21

Deadlock Detection – Centralized Approach

Each site keeps a local wait-for graph
The nodes of the graph correspond to all the processes that are
currently either holding or requesting any of the resources local to
that site

A global wait-for graph is maintained in a single coordination
process; this graph is the union of all local wait-for graphs
There are three different options (points in time) when the
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the local wait-for

graphs
2. Periodically, when a number of changes have occurred in a wait-for graph
3. Whenever the coordinator needs to invoke the cycle-detection algorithm

Unnecessary rollbacks may occur as a result of false cycles

April 08 22

Detection Algorithm Based on Option 3

Append unique identifiers (timestamps) to requests
from different sites

When process Pi, at site A, requests a resource from
process Pj, at site B, a request message with timestamp
TS is sent

The edge Pi → Pj with the label TS is inserted in the
local wait-for of A. The edge is inserted in the local
wait-for graph of B only if B has received the request
message and cannot immediately grant the requested
resource

April 08 23

The Algorithm

1. The controller sends an initiating message to each site
in the system

2. On receiving this message, a site sends its local wait-for
graph to the coordinator

3. When the controller has received a reply from each
site, it constructs a graph as follows:
(a) The constructed graph contains a vertex for every process in

the system
(b) The graph has an edge Pi → Pj if and only if

(1) there is an edge Pi → Pj in one of the wait-for graphs, or
(2) an edge Pi → Pj with some label TS appears in more than one

wait-for graph

If the constructed graph contains a cycle ⇒ deadlock
April 08 24

Example

Two Local
Wait-For
Graphs

Global
Wait-For
Graph

April 08 25

False Cycles & Unnecessary Rollbacks

Suppose p2 releases the resource it is holding at S1
The edge p1 p2 is removed from the local wait-for graph at S1
Then P2 request a resource held by P3 at S2
Edge p2 p3 is added at S2
If the add message is arrived before the delete at the coordinator,
a cycle is detected (which is false)

April 08 26

Fully Distributed Approach

All controllers share equally the responsibility for
detecting deadlock
Every site constructs a wait-for graph that represents a
part of the total graph
We add one additional node Pex to each local wait-for
graph
If a local wait-for graph contains a cycle that does not
involve node Pex, then the system is in a deadlock state
A cycle involving Pex implies the possibility of a deadlock

To ascertain whether a deadlock does exist, a distributed
deadlock-detection algorithm must be invoked

April 08 27

Augmented Local Wait-For Graphs

April 08 28

Augmented Local Wait-For Graph in Site S2

April 08 29

Election Algorithms

Determine where a new copy of the coordinator should be
restarted

can be used to elect a new coordinator in case of failures

Assume that a unique priority number is associated with each
active process in the system,

assume the priority number of process Pi is i
Assume a one-to-one correspondence between processes and sites
The coordinator is always the process with the largest priority
number. If a coordinator fails, the algorithm must elect that active
process with the largest priority number
Election algorithms,

the bully algorithm
the ring algorithm

18.6

April 08 30

The Bully Algorithm

Applicable to systems where every process can send a
message to every other process in the system

If process Pi sends a request that is not answered by
the coordinator within a time interval T, assume that
the coordinator has failed; Pi tries to elect itself as the
new coordinator

Pi sends an election message to every process with a
higher priority number, Pi then waits for any of them to
answer within T

April 08 31

The Bully Algorithm (Cont.)

If no response within T, assume that all processes with
numbers greater than i have failed; Pi elects itself the
new coordinator

If answer is received, Pi begins time interval T´, waiting
to receive a message that a process with a higher
priority number has been elected

If no message is sent within T´, assume the process with a
higher number has failed; Pi should restart the algorithm

April 08 32

The Bully Algorithm (Cont.)

If Pi is not the coordinator, then, at any time during
execution, Pi may receive one of the following two
messages from process Pj

Pj is the new coordinator (j > i). Pi, in turn, records this information
Pj started an election (j > i). Pi, sends a response to Pj and begins
its own election algorithm, provided that Pi has not already initiated
such an election

After a failed process recovers, it immediately begins
execution of the same algorithm
If there are no active processes with higher numbers, the
recovered process forces all processes with lower number
to let it become the coordinator process, even if there is a
currently active coordinator with a lower number

April 08 33

The Ring Algorithm

Applicable to systems organized as a ring (logically or
physically)
Assumes that the links are unidirectional, and that
processes send their messages to their right neighbors
Each process maintains an active list, consisting of all the
priority numbers of all active processes in the system
when the algorithm ends
If process Pi detects a coordinator failure, I creates a
new active list that is initially empty. It then sends a
message elect(i) to its right neighbor, and adds the
number i to its active list

April 08 34

The Ring Algorithm (Cont.)

If Pi receives a message elect(j) from the process on the left,
it must respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi creates a new
active list with the numbers i and j

It then sends the message elect(i), followed by the message elect(j)
2. If i ≠ j, then the active list for Pi now contains the numbers of all the

active processes in the system
Pi can now determine the largest number in the active list to identify the
new coordinator process

3. If i = j, then Pi receives the message elect(i)
The active list for Pi contains all the active processes in the system

Pi can now determine the new coordinator process.

April 08 35

Selected Topics of Chapter 16 & 18

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and
G. Gagne. Addison Wesley, 2005

