
Chapter 7: Deadlocks

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the
textbook and its complementary resources

April 08 2

Objectives/Outline

Objectives
Develop conceptual
understanding of deadlocks
Present a number of different
methods for preventing and
avoiding deadlocks

Outline
Introduction
System Model
Deadlock Characterization
Methods for Handling
Deadlocks
Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock

April 08 3

Introduction

Deadlock is defined as the permanent blocking of a set
of processes that are competing for a finite number of
system resources

occurs when a set of processes are in a wait state and each process
is waiting for a resource that is held by some other waiting process
all deadlocks involve conflicting resource needs by two or more
processes

Unlike other problems in multiprogramming systems,
there is no efficient solution to the deadlock problem in
the general case

April 08 4

Deadlock Characterization: Conditions for
Deadlock

Traffic only in one direction
Each section of a bridge can be viewed as a resource
If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)
Several cars may have to be backed up if a deadlock occurs
Starvation is possible

April 08 5

Deadlock Characterization: Conditions for
Deadlock (cont.)

The four necessary conditions for a deadlock:
Mutual Exclusion: processes require exclusive control of their
resources (no sharing)
Hold and Wait: process may wait for a resource while holding others
No Preemption: resources cannot be preempted; a process will only
voluntarily give up a resource after completing its task with this
resource.
Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes
such that P0 is waiting for a resource that is held by P1, P1 is waiting
for a resource that is held by P2, …, Pn–1 is waiting for a resource
that is held by Pn, and Pn is waiting for a resource that is held by P0

Example: semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)
wait (B); wait(A)

April 08 6

Deadlock Characterization: Resource-Allocation
Graph

A set of vertices V and a set of edges E
V is partitioned into two types: P = {P1, P2, …, Pn}, the set of all
processes in the system and R = {R1, R2, …, Rm}, the set of all resource
types in the system
A request edge is a directed edge P1 → Rj and an assignment edge is a
directed edge Rj → Pi

Process is represented by

Resource type with 4 instances is represented by

Pi requests instance of Rj represented by

Pi is holding an instance of Rj . This is represented by

Pi

Rj

Pi

Rj

April 08 7

Example of a Resource Allocation Graph

Processes: P ={P1, P2,
P3}
Resource types: R={R1,
R2, R3, R4}
Edges: E = {P1→R1,
P2→R3, R1→P2, R2→P2,
R2→P1, R3→P3}
Resource instances: R1
(one), R2 (two), R3 (one),
R4 (three)

April 08 8

Resource Allocation Graph with a Deadlock

If graph contains no cycles:
no deadlock
If graph contains a cycle:

If only one instance per
resource type, then deadlock
If several instances per
resource type, possibility of
deadlock

April 08 9

Resource Allocation Graph with a Cycle But No Deadlock

April 08 10

Methods for Handling Deadlocks

How can we handle a deadlock situation?
Ensure that the system will never enter a deadlock state

In this case, the system can use either deadlock prevention or
deadlock avoidance techniques

Allow the system to enter a deadlock state and then recover
In this case, the system employs deadlock detection and deadlock

recovery techniques

Ignore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX

This results in deterioration of system performance and results in
restarting the system manually

April 08 11

Deadlock Prevention

By ensuring that at least one of the four necessary
deadlock conditions cannot hold, we prevent the
occurrence of a deadlock
Mutual Exclusion

Not required for sharable resources such as read-only files
Must hold for non-sharable resources such as a printer

Hold and Wait: must guarantee that whenever a
process requests a resource, it does not hold any
other resources

Require the process to request and be allocated all its
resources before it begins execution, or allow the process to
request resources only when the process has no other
resources
Low resource utilization and starvation is possible

April 08 12

Deadlock Prevention (cont.)

No Preemption
If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released
Preempted resources are added to the list of resources for
which the process is waiting
Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting
other solutions?? If requested resources are held by waiting
processes, preempt them from the waiting processes and
allocate them to the requesting process; otherwise wait

Circular Wait – impose a total ordering of all resource
types, and require that each process requests resources
in an increasing order of enumeration

April 08 13

Activity

Prove that the circular-wait condition can not hold
under each of the following conditions

A process holding Ri can request Rj iff F(Rj)>F(Ri)
If a process request Rj then it has released all resources Ri for
which F(Ri) >= F(Rj)

April 08 14

Deadlock Avoidance

Requires that the system has some additional a priori
information available

Simplest and most useful model requires that each process
declare the maximum number of resources of each type that
it may need
The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition
Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes
We want to insure that the resource-allocation state is safe

April 08 15

Deadlock Avoidance: Safe State

When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state
System is in a safe state if there exists a safe sequence of all
processes
Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi
can still request can be satisfied by currently available resources +
resources held by all the Pj with j < i

If Pi resource needs are not immediately available, then Pi can wait until
all Pj have finished
When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate
When Pi terminates, Pi+1 can obtain its needed resources, and so on

April 08 16

Deadlock Avoidance: Safe State

If a system is in safe state ⇒ no deadlocks
If a system is in unsafe state ⇒ possibility of deadlock
Avoidance ⇒ ensure that a system will never enter an unsafe state

April 08 17

Resource-Allocation Graph Algorithm

Applicable to a system with ONE
instance of each resource

Claim edge Pi → Rj indicated that
process Pj may request resource Rj

represented by a dashed line

Claim edge converts to request edge
when a process requests a resource

When a resource is released by a
process, assignment edge reconverts to
a claim edge

Resources must be claimed a priori in
the system

April 08 18

Deadlock Avoidance: Banker’s Algorithm

Applicable to a system with multiple instances of each
resource
Analogy to a banking system

Could be used in banking system to ensure that the bank never
allocates its available cash such that it can no longer satisfy the
needs of all customers

Each process must claim maximum resources usage in
advance
When a process requests a resource it may have to wait

April 08 19

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of
resources types
Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available
Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

Allocation: n x m matrix. If Allocation[i,j] = k then Pi
is currently allocated k instances of Rj

Need: n x m matrix. If Need[i,j] = k, then Pi may need
k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

April 08 20

Data Structures for the Banker’s Algorithm:
Example

Assume that there are 5 processes P0 through P4; 3 resource types
A (10 instances), B (5 instances), and C (7 instances)
n = ?, m = ?
available [A] = ?
available [B] = ?
available [C] = ?
Snapshot at time:

Allocation Max Available Need
A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

April 08 21

Banker’s Algorithm

Check whether a request from process i can be satisfied
if the request from process i cannot be satisfied

error or deny the request
else

Pretend to allocate
check safety
if current system is safe then

grant the allocation to the request
else deny the request

restore original state if necessary

April 08 22

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work := Available
Finish [i] = false for i - 1,3, …, n.

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4

3. Work := Work + Allocationi
Finish[i] := true
go to step 2

4. If Finish [i] = true for all i, then the system is in a safe
state

Matrix Need is defined as Max – Allocation

Available Need
A B C A B C
3 3 2 P0 7 4 3

P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

Sequence <P1, P3, P4, P2, P0> satisfies
safety criteria

April 08 23

Example of Safety Algorithm

Assume that there are 5 processes P0 through P4; 3 resource types A (10 instances), B (5
instances), and C (7 instances)
Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

The content of the matrix Need is defined to be Max – Allocation
Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria

April 08 24

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi
If Requesti [j] = k then process Pi wants k instances of
resource type Rj.
1. If Requesti ≤ Needi go to step 2. Otherwise, raise error

condition, since process has exceeded its maximum claim
2. If Requesti ≤ Available, go to step 3. Otherwise Pi must wait,

since resources are not available
3. Pretend to allocate requested resources to Pi by modifying the

state as follows:
Available := Available - Requesti
Allocationi := Allocationi + Requesti
Needi := Needi – Requesti

• If safe ⇒ the resources are allocated to Pi
• If unsafe ⇒ Pi must wait, and the old resource-allocation state is

restored

April 08 25

Resource-Request Algorithm for Process Pi

Suppose that P1 requests (1,0,2)
Check that Request ≤ Available ; that is, (1,0,2) ≤ (3,3,2) ⇒ true

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety
requirement
Next, can request for (3,3,0) by P4 be granted?
Lastly, can request for (0,2,0) by P0 be granted? Question for you!

In practice, Banker’s algorithm is rarely implemented, since processes don’t know a head of
time the maximum resources they will need

Banker’s algorithm depends on future information (i.e., information a head of time on the
maximum resources that processes will need)

April 08 26

Summary: Banker’s algorithm

if Request[i,j] > Need[i,j], for all j, then
error;

if Request[i,j] > Available[j], for all j, then
deny the request;

- pretend to allocate
for all i,j :

Available[j] := Available[j] - Request[i,j];
Allocated[i,j] := Allocated[i,j] + Request[i,j];
Need[i,j] := Need[i,j] - Request[i,j];

- check safety
if current system is safe then

grant the allocation to the request;
else

deny the request
- restore original state if necessary
for all i,j :

Available[j] := Available[j] + Request[i,j];
Allocated[i,j] := Allocated[i,j] - Request[i,j];
Need[i,j] := Need[i,j] + Request[i,j];

April 08 27

Deadlock Detection

Allow system to enter deadlock state
Detection algorithm
Recovery scheme

Two different solutions exist:
For systems with single instance of each resource type

We define a deadlock-detection algorithm called wait-for graph

For systems with multiple instances of each resource type
We define a deadlock-detection algorithm that is a similar to the
banker’s algorithm

April 08 28

Detection algorithm for Single Instance of Each
Resource Type

Maintain a wait-for graph
Nodes are processes
Pi → Pj if Pi is waiting for Pj

(a) Resource-Allocation Graph (b) Corresponding wait-for graph

Periodically invoke
an algorithm that
searches for a cycle
in the wait-for graph

April 08 29

Several Instances of a Resource Type

Uses a variant of banker’s algorithm

Data structures
Available: A vector of length m indicates the number of available
resources of each type
Allocation: An n x m matrix defines the number of resources of each
type currently allocated to each process

Allocationi the number of resources of each type currently allocated
to process Pi (a vector of length m)

Request: An n x m matrix indicates the current request of each
process. If Request [i, j] = k, then process Pi is requesting k more
instances of resource type Rj

Requesti the current request of process Pi of each resource type (a
vector of length m)

Work and Finish be vectors of length m and n, respectively

April 08 30

Detection Algorithm for Several Instances of a
Resource Type

1. Initialize:
(a) Work = Available
(b) For i = 0,1,2, …, n-1, if Allocationi ≠ 0, then

Finish[i] = false; otherwise, Finish[i] = true
2. Find an index i such that both:

(a) Finish[i] == false
(b) Requesti ≤ Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in deadlock
state. Moreover, if Finish[i] == false, then Pi is deadlocked

Complexity: requires m.n2 operations

April 08 31

Example of Detection Algorithm

Five processes P0 through P4

Three resource types:
A (7 instances), B (2 instances), and C (6 instances)
Snapshot at time T0:

Allocation Request Available
A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i
Exercise: verify that.

April 08 32

Example (Cont.)

P2 requests an additional instance of type C
Request
A B C

P0 0 0 0
P1 2 0 2

P2 0 0 1
P3 1 0 0
P4 0 0 2

State of system?
Can reclaim resources held by process P0, but insufficient resources to fulfill
requests of other processes
Deadlock exists, consisting of processes P1, P2, P3, and P4

April 08 33

Deadlock Recovery

Report deadlock and let the operator deal with it
manually
Recover automatically from the deadlock

Process termination – abort one or more processes and reclaim
all resources allocated to the terminated processes to break the
circular wait

Aborting a process may or may not be easy, e.g. terminating a
process in the midst of updating a file may have the file in
incorrect state
Partial computations will be wasted

Resource preemption – preempt some resources from one or
more deadlocked processes until deadlock is cycle is broken

April 08 34

Recovery from Deadlock: Process Termination

There are two approaches
Abort all deadlocked processes

Great expense in terms of wasted partial computations
Abort one process at a time until the deadlock cycle is eliminated

Incurs considerable overhead; after each process is aborted, a deadlock
detection must be invoked

Which processes to terminate and the order of termination is a
policy decision that should minimize the incurred costs
Factors that affect the decision

Priority of the process
How long process has computed, and how much longer to completion
Resources the process has used
Resources process needs to complete
How many processes will need to be terminated
Is process interactive or batch?

April 08 35

Recovery from Deadlock: Resource Preemption

Need to deal with three issues:
Selecting a victim

which resources to be preempted and from which process
minimize cost as in process termination

Rollback
return to some safe state (checkpoint), restart process from that
state
roll back as far as necessary to break the deadlock
total rollback – abort the process and then restart it

Starvation –
how to ensure that the same process will not be always picked as
a victim?
include the number of rollbacks in the cost factor

End of Chapter 7

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and
G. Gagne. Addison Wesley, 2005

