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Objectives/Outline

Objectives
Develop conceptual 
understanding of deadlocks
Present a number of different 
methods for preventing and  
avoiding deadlocks

Outline
Introduction
System Model
Deadlock Characterization
Methods for Handling 
Deadlocks
Deadlock Prevention
Deadlock Avoidance
Deadlock Detection 
Recovery from Deadlock 
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Introduction

Deadlock is defined as the permanent blocking of a set 
of processes that are competing for a finite number of 
system resources

occurs when a set of processes are in a wait state and each process 
is waiting for a resource that is held by some other waiting process
all deadlocks involve conflicting resource needs by two or more 
processes

Unlike other problems in multiprogramming systems, 
there is no efficient solution to the deadlock problem in 
the general case
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Deadlock Characterization: Conditions for 
Deadlock

Traffic only in one direction
Each section of a bridge can be viewed as a resource
If a deadlock occurs, it can be resolved if one car backs up 
(preempt resources and rollback)
Several cars may have to be backed up if a deadlock occurs
Starvation is possible
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Deadlock Characterization: Conditions for 
Deadlock (cont.)

The four necessary conditions for a deadlock:
Mutual Exclusion: processes require exclusive control of their 
resources (no sharing) 
Hold and Wait: process may wait for a resource while holding others
No Preemption: resources cannot be preempted; a process will only 
voluntarily give up a resource after completing its task with this 
resource. 
Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes 
such that P0 is waiting for a resource that is held by P1, P1 is waiting 
for a resource that is held by P2, …, Pn–1 is waiting for a resource 
that is held by Pn, and Pn is waiting for a resource that is held by P0

Example: semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)
wait (B); wait(A)
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Deadlock Characterization: Resource-Allocation 
Graph

A set of vertices V and a set of edges E
V is partitioned into two types: P = {P1, P2, …, Pn}, the set of all 
processes in the system and R = {R1, R2, …, Rm}, the set of all resource 
types in the system
A request edge is a directed edge P1 → Rj and an assignment edge is a  
directed edge Rj → Pi

Process is represented by

Resource type with 4 instances is represented by

Pi requests instance of Rj   represented by

Pi is holding an instance of Rj  . This is represented by

Pi

Rj

Pi

Rj
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Example of a Resource Allocation Graph

Processes: P ={P1, P2, 
P3}
Resource types: R={R1, 
R2, R3, R4}
Edges: E = {P1→R1, 
P2→R3, R1→P2, R2→P2, 
R2→P1, R3→P3}
Resource instances: R1
(one), R2 (two), R3 (one), 
R4 (three) 

April 08 8

Resource Allocation Graph with a Deadlock

If graph contains no cycles: 
no deadlock
If graph contains a cycle:

If only one instance per 
resource type, then deadlock
If several instances per 
resource type, possibility of 
deadlock
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Resource Allocation Graph with a Cycle But No Deadlock
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Methods for Handling Deadlocks

How can we handle a deadlock situation?
Ensure that the system will never enter a deadlock state 

In this case, the system can use either deadlock prevention or 
deadlock avoidance techniques

Allow the system to enter a deadlock state and then recover
In this case, the system employs deadlock detection and deadlock 

recovery techniques 

Ignore the problem and pretend that deadlocks never occur in 
the system; used by most operating systems, including UNIX

This results in deterioration of system performance and results in 
restarting the system manually
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Deadlock Prevention

By ensuring that at least one of the four necessary 
deadlock conditions cannot hold, we prevent the 
occurrence of a deadlock
Mutual Exclusion

Not required for sharable resources such as  read-only files
Must hold for non-sharable resources such as a printer

Hold and Wait: must guarantee that whenever a 
process requests a resource, it does not hold any 
other resources

Require the process to request and be allocated all its 
resources before it begins execution, or allow the process to 
request resources only when the process has no other 
resources
Low resource utilization and starvation is possible
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Deadlock Prevention (cont.)

No Preemption
If a process that is holding some resources requests another 
resource that cannot be immediately allocated to it, then all 
resources currently being held are released
Preempted resources are added to the list of resources for 
which the process is waiting
Process will be restarted only when it can regain its old 
resources, as well as the new ones that it is requesting
other solutions?? If requested resources are held by waiting 
processes, preempt them from the waiting processes and 
allocate them to the requesting process; otherwise wait

Circular Wait – impose a total ordering of all resource 
types, and require that each process requests resources 
in an increasing order of enumeration
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Activity

Prove that the circular-wait condition can not hold 
under each of the following conditions 

A process holding Ri can request Rj iff F(Rj)>F(Ri)
If a process request Rj then it has released all resources Ri for 
which F(Ri) >= F(Rj) 
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Deadlock Avoidance

Requires that the system has some additional a priori 
information available

Simplest and most useful model requires that each process 
declare the maximum number of resources of each type that 
it may need
The deadlock-avoidance algorithm dynamically examines the 
resource-allocation state to ensure that there can never be a 
circular-wait condition
Resource-allocation state is defined by the number of 
available and allocated resources, and the maximum 
demands of the processes
We want to insure that the resource-allocation state is safe
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Deadlock Avoidance: Safe State

When a process requests an available resource, system must decide 
if immediate allocation leaves the system in a safe state
System is in a safe state if there exists a safe sequence of all
processes
Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi  
can still request can be satisfied by currently available resources + 
resources held by all the Pj with j < i

If Pi resource needs are not immediately available, then Pi can wait until 
all Pj have finished
When Pj is finished, Pi can obtain needed resources, execute, return 
allocated resources, and terminate
When Pi terminates, Pi+1 can obtain its needed resources, and so on
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Deadlock Avoidance: Safe State

If a system is in safe state ⇒ no deadlocks
If a system is in unsafe state ⇒ possibility of deadlock
Avoidance ⇒ ensure that a system will never enter an unsafe state
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Resource-Allocation Graph Algorithm

Applicable to a system with ONE 
instance of each resource

Claim edge Pi → Rj indicated that 
process Pj may request resource Rj

represented by a dashed line

Claim edge converts to request edge 
when a process requests a resource

When a resource is released by a 
process, assignment edge reconverts to 
a claim edge

Resources must be claimed a priori in 
the system
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Deadlock Avoidance: Banker’s Algorithm

Applicable to a system with multiple instances of each 
resource
Analogy to a banking system

Could be used in banking system to ensure that the bank never 
allocates its available cash such that it can no longer satisfy the 
needs of all customers

Each process must claim maximum resources usage in 
advance
When a process requests a resource it may have to wait

April 08 19

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of 
resources types
Available: Vector of length m. If available [j] = k, there 
are k instances of resource type Rj available
Max: n x m matrix.  If Max [i,j] = k, then process Pi may 
request at most k  instances of resource type Rj

Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi
is currently allocated k instances of Rj

Need:  n x m matrix. If Need[i,j] = k, then Pi may need 
k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]
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Data Structures for the Banker’s Algorithm: 
Example

Assume that there are 5 processes P0 through P4; 3 resource types 
A (10 instances),  B (5 instances), and C (7 instances)
n = ?, m = ?
available [A] = ?
available [B] = ?
available [C] = ?
Snapshot at time:

Allocation        Max Available       Need
A B C             A B C A B C            A B C

P0 0 1 0             7 5 3         3 3 2             
P1 2 0 0 3 2 2  
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3
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Banker’s Algorithm

Check whether a request from process i can be satisfied
if  the request  from process i cannot be satisfied

error or deny the request
else

Pretend to allocate
check safety 
if current system is safe then

grant the allocation to the request
else deny the request

restore original state if necessary 
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Safety Algorithm

1. Let Work and Finish be vectors of length m and n, 
respectively.  Initialize:

Work := Available
Finish [i] = false for i - 1,3, …, n.

2. Find an i  such that both: 
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i  exists, go to step 4

3. Work := Work + Allocationi
Finish[i] := true
go to step 2

4. If Finish [i] = true for all i, then the system is in a safe 
state

Matrix Need is defined as Max – Allocation

Available Need
A  B  C A B C
3  3  2 P0 7 4 3 

P1 1 2 2 
P2 6 0 0 
P3 0 1 1
P4 4 3 1 

Sequence <P1, P3, P4, P2, P0> satisfies 
safety criteria
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Example of Safety Algorithm

Assume that there are 5 processes P0 through P4; 3 resource types A (10 instances),  B (5 
instances), and C (7 instances)
Snapshot at time T0:

Allocation Max Available
A B C             A B C A B C

P0 0 1 0             7 5 3       3 3 2
P1 2 0 0 3 2 2  
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

The content of the matrix Need is defined to be Max – Allocation
Need
A B C

P0 7 4 3 
P1 1 2 2 
P2 6 0 0 
P3 0 1 1
P4 4 3 1 

The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria
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Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi
If Requesti [j] = k then process Pi wants k instances of 
resource type Rj.
1. If Requesti ≤ Needi go to step 2.  Otherwise, raise error 

condition, since process has exceeded its maximum claim
2. If Requesti ≤ Available, go to step 3.  Otherwise Pi must wait, 

since resources are not available
3. Pretend to allocate requested resources to Pi by modifying the 

state as follows:
Available := Available - Requesti
Allocationi := Allocationi + Requesti
Needi := Needi – Requesti

• If safe ⇒ the resources are allocated to Pi
• If unsafe ⇒ Pi must wait, and the old resource-allocation state is 

restored
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Resource-Request Algorithm for Process Pi

Suppose that P1 requests (1,0,2)
Check that Request ≤ Available ; that is, (1,0,2) ≤ (3,3,2) ⇒ true

Allocation Need Available
A B C A B C A B C 

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0 
P2 3 0 2 6 0 0 
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1 

Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety 
requirement 
Next, can request for (3,3,0) by P4 be granted?  
Lastly, can request for (0,2,0) by P0 be granted?  Question for you!

In practice, Banker’s algorithm is rarely implemented, since processes don’t know a head of 
time the maximum resources they will need

Banker’s algorithm depends on future information (i.e., information a head of time on the 
maximum resources that processes will need)
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Summary: Banker’s algorithm

if Request[i,j] > Need[i,j], for all j, then
error; 

if Request[i,j] > Available[j], for all j, then
deny the request; 

- pretend to allocate 
for all i,j : 

Available[j] := Available[j] - Request[i,j];
Allocated[i,j] := Allocated[i,j] + Request[i,j];
Need[i,j] := Need[i,j] - Request[i,j];

- check safety 
if current system is safe then

grant the allocation to the request;
else

deny the request
- restore original state if necessary 
for all i,j : 

Available[j] := Available[j] + Request[i,j]; 
Allocated[i,j] := Allocated[i,j] - Request[i,j];
Need[i,j] := Need[i,j] + Request[i,j];
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Deadlock Detection

Allow system to enter deadlock state 
Detection algorithm
Recovery scheme

Two different solutions exist:
For systems with single instance of each resource type

We define a deadlock-detection algorithm called wait-for graph

For systems with multiple instances of each resource type
We define a deadlock-detection algorithm that is a similar to the 
banker’s algorithm
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Detection algorithm for Single Instance of Each 
Resource Type

Maintain a wait-for graph
Nodes are processes
Pi → Pj if Pi is waiting for Pj

(a) Resource-Allocation Graph (b) Corresponding wait-for graph

Periodically invoke 
an algorithm that 
searches for a cycle 
in the wait-for graph
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Several Instances of a Resource Type

Uses a variant of banker’s algorithm

Data structures
Available: A vector of length m indicates the number of available 
resources of each type
Allocation: An n x m matrix defines the number of resources of each 
type currently allocated to each process

Allocationi the number of resources of each type currently allocated 
to process Pi  (a vector of length m)

Request: An n x m matrix indicates the current request  of each 
process.  If Request [i, j] = k, then process Pi is requesting k more 
instances of resource type Rj

Requesti the current request of process Pi of each resource type (a 
vector of length m)

Work and Finish be vectors of length m and n, respectively 
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Detection Algorithm for Several Instances of a 
Resource Type

1. Initialize:
(a) Work = Available
(b) For i = 0,1,2, …, n-1, if Allocationi ≠ 0, then 

Finish[i] = false; otherwise, Finish[i] = true
2. Find an index i  such that both:

(a) Finish[i] == false
(b) Requesti ≤ Work
If no such i exists, go to step 4

3.  Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in deadlock 
state. Moreover, if Finish[i] == false, then Pi is deadlocked

Complexity: requires m.n2 operations
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Example of Detection Algorithm

Five processes P0 through P4 

Three resource types: 
A (7 instances), B (2 instances), and C (6 instances)
Snapshot at time T0:

Allocation    Request Available
A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0 
P3 2 1 1 1 0 0 
P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i
Exercise: verify that.
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Example (Cont.)

P2 requests an additional instance of type C
Request
A B C

P0 0 0 0
P1 2 0 2

P2 0 0 1
P3 1 0 0 
P4 0 0 2

State of system?
Can reclaim resources held by process P0, but insufficient resources to fulfill 
requests of other processes
Deadlock exists, consisting of processes P1, P2, P3, and P4
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Deadlock Recovery

Report deadlock and let the operator deal with it 
manually 
Recover automatically from the deadlock

Process termination – abort one or more processes and reclaim 
all resources allocated to the terminated processes to break the
circular wait

Aborting a process may or may not be easy, e.g. terminating a 
process in the midst of updating a file may have the file in 
incorrect state
Partial computations will be wasted

Resource preemption – preempt some resources from one or 
more deadlocked processes until deadlock is cycle is broken
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Recovery from Deadlock: Process Termination

There are two approaches
Abort all deadlocked processes

Great expense in terms of wasted partial computations
Abort one process at a time until the deadlock cycle is eliminated 

Incurs considerable overhead; after each process is aborted, a deadlock 
detection must be invoked 

Which processes to terminate and the order of termination is a 
policy decision that should minimize the incurred costs
Factors that affect the decision

Priority of the process
How long process has computed, and how much longer to completion
Resources the process has used
Resources process needs to complete
How many processes will need to be terminated
Is process interactive or batch?
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Recovery from Deadlock: Resource Preemption

Need to deal with three issues:
Selecting a victim 

which resources to be preempted and from which process
minimize cost as in process termination

Rollback 
return to some safe state (checkpoint), restart process from that 
state
roll back as far as necessary to break the deadlock
total rollback – abort the process and then restart it

Starvation –
how to ensure that the same process will not be always picked as
a victim?
include the number of rollbacks in the cost factor

End of Chapter 7
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