
May 08 1

Chapter 9: Virtual Memory

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the
textbook and its complementary resources

May 08 2

Objectives/Outline

Objectives
Describe the benefits of a
virtual memory system

Explain the concepts of
demand paging, page
replacement algorithms, and
allocation of page frames

Outline
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Demand Segmentation
Operating System Examples

May 08 3

Background

All memory management strategies have the same goal to keep
many processes in memory simultaneously to allow
multiprogramming and hence increase the CPU utilization
Memory management is required because instructions must be in
physical memory to be executed

Put the entire process in physical memory (problem: limited memory)
Dynamic loading can ease this restriction (requires extra work by the
programmer)

Virtual memory is a technique that allows the execution of
processes that are not completely in memory

Creates illusion of a “virtual” memory that can be larger than real
memory but still nearly as fast

May 08 4

Background (cont.)

Virtual memory –
separation of user
logical memory from
physical memory.

Only part of the program
needs to be in memory
for execution.
Logical address space
can therefore be much
larger than physical
address space.

Potentially as big as a
disk, but normally
constrained by the
address size [232=4GB]

May 08 5

Background (cont.)

Advantages:
Processes can be larger can physical memory in the system
Programmers need not worry about the memory storage
limitations
Allows address spaces to be shared by several processes.
Allows for more efficient process creation.
Allows processes to share files

Disadvantages
Not easy to implement
May substantially decrease the performance if it is used
carelessly

May 08 6

Virtual-address Space

May 08 7

Shared Library Using Virtual Memory

May 08 8

Background (cont.)

Virtual memory can be implemented via:
Demand paging
Demand segmentation

May 08 9

Demand Paging

Bring a page into memory only
when it is needed during program
execution

Less physical memory needed
Reduce the swap time and thus
has faster response
Accommodate more users

A swapper manipulates the entire
process, whereas a pager (a lazy
swapper) manipulates just
individual pages associated with a
process
Page is needed ⇒ reference to it

invalid reference ⇒ abort
not-in-memory ⇒ bring to
memory Transfer of a Paged Memory to

Contiguous Disk Space
May 08 10

Page Table When Some Pages Are Not in Main Memory

Each page
table entry
has a valid–
invalid bit is
associated
(1 ⇒ in-
memory, 0 ⇒
not-in-
memory)

May 08 11

Steps in Handling a Page Fault

May 08 12

Performance of Demand Paging

Demand paging can significantly affect the
performance of a computer system
Performance metrics:

Page Fault Rate (p),
0 ≤ p ≤ 1.0
if p = 0 no page faults
if p = 1, every reference is a fault

Effective Access Time (EAT)

EAT = (1 – p) x memory access
+ p x page fault time

May 08 13

Example

Memory access time = 100 nanoseconds
Average page-fault service = 25 microseconds
Then:

EAT = (1 – p) x 100 + p x 25,000,000
= 100 + 24,999,900 p

Activity: What should be the value for p if we want the
performance degradation to be less than 10%?

May 08 14

Copy-on-Write

Copy-on-Write (COW) allows both parent and child
processes to initially share the same pages in memory

If either process modifies a shared page, only then is
the page copied

COW allows more efficient process creation as only
modified pages are copied

Free pages are allocated from a pool of zeroed-out
pages

May 08 15

Page Replacement

Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement

Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical memory

May 08 16

Basic Page Replacement

May 08 17

Basic Page Replacement (cont.)

1. Find the location of the desired page on disk
2. Find a free frame:

1. If there is a free frame, use it
2. If there is no free frame, use a page replacement

algorithm to select a victim frame; write the victim frame to
the disk, change the page and frame tables accordingly

3. Read the desired page into the (newly) free frame;
Update the page and frame tables

4. Restart the user process

May 08 18

Page Replacement Algorithms

Many page replacement algorithms exist
Want lowest page-fault rate
Evaluate algorithm by
running it on a particular
string of memory
references (reference
string) and computing the
number of page faults on
that string

Reference strings are
either generated randomly
or using by tracing a given
system

As the number of frames
available to the process
increases, the number of
page faults decreases

May 08 19

Page Replacement Algorithms (cont.)

Replacement algorithms
FIFO Page Replacement (the simplest)
Optimal Page Replacement (OPT or MIN)
Least Recently Used (LRU) Page Replacement
LRU Approximation Page Replacement
Counting algorithms (not commonly used)

Least frequently used (LFU) algorithm
Most frequently used (MFU) algorithm

May 08 20

FIFO Algorithm

Replaces the oldest page in the memory
Easy to understand and program
Performance is not always good
Suffer from Belady’s anomaly

May 08 21

FIFO Algorithm (cont.)

Given reference string
7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

Number of frames is 3
Allocation and replacement

Num of page faults = 15

May 08 22

Another Example

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
3 frames (3 pages can be in memory at a time per
process)

4 frames

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

May 08 23

Another Example (cont.)

FIFO Replacement suffers from Belady’s Anomaly
more frames does not guarantee less page faults!!!

May 08 24

Optimal Algorithm

Replace the page that will not be used for the longest
period of time
Has the lowest page fault rate
Never suffer from Belady’s anomaly
Difficult to implement

it requires future knowledge of the reference string

Used for measuring how well other algorithms perform
(benchmark)

May 08 25

Optimal Algorithm (cont.)

Given reference string
7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

Number of frames is 3
Allocation and replacement

Num of page faults = 9

May 08 26

Another Example

4 frames example
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

4

6 page faults

4 5

May 08 27

Least Recently Used (LRU) Algorithm

FIFO uses the past (looks backward)
OPT uses the future (looks forward)
LRU uses the recent past as an approximation of the
near future

Replace the page that has NOT been used for the longest
period of time

Counter implementation
Every page entry has a counter; every time the page is
referenced through this entry, copy the clock into the counter
When a page needs to be changed, look at the counters to
determine which are to change

May 08 28

LRU Algorithm (cont.)

Example

1

2

3

5

4
4 3

5

Another example:
Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

May 08 29

LRU Algorithm (Cont.)

Stack implementation: keep
a stack of page numbers in
a double link form. If a
page is referenced, then
move it to the top. At
worst, we require 6 pointers
to be changed
No search for replacement
and does not suffer from
Belady’s anomaly
Requires hardware support

May 08 30

LRU Approximation Algorithms

Some systems provide no hardware support for LRU
Many system provide some help in the form of a reference bit

With each page associate a bit, initially = 0
When page is referenced bit set to 1
Replace the one which is 0 (if one exists). We do not know the order,
however.

Record reference bits at regular interval can provide ordering
information
Second-chance algorithm

Need reference bit
Clock replacement
If page to be replaced (in clock order) has reference bit = 1 then:

set reference bit 0
leave page in memory
replace next page (in clock order), subject to same rules

May 08 31

Second-Chance (Clock) Algorithm

A pointer indicates
which page needs
to be replaced next

When a frame is
needed, the pointer
is advanced until it
finds a page with
reference bit = 0

As the pointer
advances, it clears
the reference bits

May 08 32

Enhanced second-chance algorithm

uses the reference bit and the modify bit as an ordered pair (R, M)
There are four possible classes for each page

(0, 0) neither recently used nor modified – the best page to replace
(0, 1) not recently used but modified – not quite as good; as it needs
to be written out before replacement
(1, 0) recently used but clean – probably will be used again soon
(1, 1) recently used and modified – probably will be used again soon
and needs to be written out before replacement

Page replacement use a similar algorithm as the clock algorithm
but by considering the page class

Replace the first page encountered in the lowest nonempty class

May 08 33

Counting Algorithms

Keep a counter of the number of references that have
been made to each page:

Least Frequently Used (LFU) Algorithm:
Replaces page with the smallest count
An actively used page should have a large reference number

Most Frequently Used (MFU) Algorithm
Replaces page with the highest count
Based on the argument that the page with the smallest count
was probably just brought in and has yet to be used

Not commonly used: expensive implementation + not
approximating OPT

May 08 34

Allocation of Frames

Each process needs minimum number of pages
Example: IBM 370 – 6 pages to handle move
instruction:

instruction is 6 bytes, might span 2 pages
2 pages to handle from
2 pages to handle to

Major allocation schemes
Fixed allocation (equal, proportional)
Priority allocation

May 08 35

Fixed Allocation

Equal allocation: e.g., if 100 frames and 5 processes,
give each 20 pages
Proportional allocation: Allocate according to size of
process

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=

=

=

∑

for allocation

frames ofnumber total

 process of size

5964
137
127

564
137
10

127 ,10 ,64

2

1

2

≈×=

≈×=

===

a

a

ssm i

Both depend on the degree of multiprogramming

May 08 36

Priority Allocation

Use a proportional allocation scheme using priorities
rather than size

A high priority process is given more frames to speed its
execution

If process Pi generates a page fault
Select for replacement one of its frames
Select for replacement a frame from a process with lower
priority number

May 08 37

Local vs. Global Allocation

Local replacement:
Each process selects from only its own set of allocated frames
The number of frames allocated to each process does not change
Can hinder a process by not making available to it a less used page

Global replacement:
Process selects a replacement frame from the set of all frames
One process can take a frame from another
A process can increase its frames on the expense of other unfortunate
processes
Thus a process can not control its fault rate; it depends not only on its
paging behavior but also on other processes
Generally results in greater system throughput and hence it is more
common

May 08 38

Thrashing

If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

low CPU utilization
operating system thinks that it needs to increase the degree of
multiprogramming
another process added to the system

May 08 39

Thrashing (cont.)

Thrashing is a high paging activity that may occur when
the number of frames allocated to a process is below
the minimum number of frames required to support its
execution
A process is thrashing if it is busy spending more time
paging than executing
Can we limit the effects of thrashing?

Use local replacement algorithm
Provide a process as many frames as possible?? How??

Working-set strategy which is based the assumption of locality

May 08 40

Locality in memory reference pattern

A locality is a set of
pages that are
actively used
together

May 08 41

Working-Set Model

The working set strategy prevents thrashing while keeping
the degree of multiprogramming as high as possible
∆ ≡ working-set window ≡ a fixed number of page references
Example: 10,000 instruction
WSSi (working set size of Process Pi) = total number of pages
referenced in the most recent ∆ (varies in time)

May 08 42

Working-Set Model (cont.)

The size of ∆ and locality:
if ∆ too small will not encompass entire locality
if ∆ too large will encompass several localities
if ∆ = ∞ ⇒ will encompass entire program

D = Σ WSSi ≡ total demand frames
if D > m ⇒ Thrashing,

where m is the number of total frames available

Based on , the OS monitor the working set and
allocates enough frames for the working set;

If no available frames, the OS selects a process to suspend

The problem is keeping track of the working set

May 08 43

The Page-Fault Frequency (PFF) Strategy

Define an upper bound U and lower bound L for page fault rates
Allocate more frames to a process if fault rate is higher than U
Allocate less frames if fault rate is < L
The resident set size should be close to the working set size W
We suspend the process if the PFF > U and no more free frames
are available

May 08 44

Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

A file is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

Simplifies file access by treating file I/O through memory rather
than read() and write() system calls

Also allows several processes to map the same file allowing the
pages in memory to be shared

May 08 45

Memory-Mapped Files

May 08 46

Another Consideration

A program structure example:

Array A[1024, 1024] of integer. Each row is stored in one page
Program 1
for j := 1 to 1024 do

for i := 1 to 1024 do
A[i,j] := 0;

1024 x 1024 page faults
Program 2
for i := 1 to 1024 do

for j := 1 to 1024 do
A[i,j] := 0;

1024 page faults

A[1,1], A[1,2],…,A[1,1024]
A[2,1], A[2,2],…,A[2,1024]
.
.
.
A[1024,1],A[1024,2],…,A[1024,1024]

May 08 47

Selected Topics of Chapter 9

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and
G. Gagne. Addison Wesley, 2005

