
March 08 1

CPU Scheduling

Chapter 5:

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the
textbook and its complementary resources

March 08 2

Recap: Process states and transitions

State diagram

Example

March 08 3

Recap: Context Switching

March 08 4

Objectives/Outline

Objectives
Introduce CPU scheduling
Describe various CPU-
scheduling algorithms
Discuss evaluation criteria for
selecting a CPU-scheduling
algorithm for a particular
system

Outline
Basic Concepts
Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling
Algorithm Evaluation

March 08 5

Basic Concepts

Multiprogramming systems provide interleaved execution
of several processes to give an illusion of many
simultaneously executing processes.

Computer can be a single-processor or multi-processor machine.
OS must keep track of the state for each active process and
make sure that the correct information is properly installed when
a process is given control of the CPU.

By switching CPU among processes can make the
computer more productive (i.e. enhance CPU utilization)

March 08 6

Basic Concepts (cont.)

Nature of Processes
Not all processes have an even
mix of CPU and I/O usage
CPU-BOUND process

A number crunching program
may do a lot of computation
and minimal I/O

I/O-BOUND process
A data processing job may do
little computation and a lot of
I/O

Required OS components:
Dispatcher
Scheduler

Alternating Sequence of
CPU And I/O Bursts

March 08 7

Dispatcher

Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

Context switch – occurs when a process exchange is made
between ready and run queues; OS must save the state of the
running process and restore the state of the ready process
Switching to user mode
Jumping to the proper location in the user program to restart that
program

Dispatch latency – time it takes for the dispatcher to stop
one process and start another running

March 08 8

CPU Scheduling

Selects from among the processes in memory that are ready to
execute, and allocates the CPU cycles to one of them
Types of Schedulers

Job scheduler (long-term scheduler)
In a batch system, job scheduler decides as jobs arrive to the system which
jobs to let into memory and in which order
Occurs less frequently

CPU scheduler (short-term scheduler)
Decides which process to run next from those waiting in the ready queue
Short-term scheduling only deals with jobs that are currently resident in
memory
Occurs frequently

Swapper (medium-term scheduler)
Involves suspending or resuming processes by swapping (rolling) them out of
or into memory (from disk)

March 08 9

CPU Scheduling

CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

Scheduling under 1 and 4 is non-preemptive
All other scheduling is preemptive
Non-preemptive scheduler means: a process is never FORCED to give up
control of the CPU. The process gives up control of the CPU only

If it isn't using the CPU
If it is waiting for I/O
If it is finished using the CPU

Preemptive scheduling is forcing a process to give up control of the CPU

March 08 10

Scheduling Criteria

Scheduling is an optimization task – it is performed in such a way
to achieve “good performance” of some criteria
There are many factors to consider:

CPU utilization: percentage of time the CPU is busy; keep the
CPU as busy as possible
Throughput: number of jobs completed per time unit
Total service time (turnaround time): time from submission to
completion of a job
Waiting Time: amount of time a job spends in the ready queue
Response time: time until the system starts to respond to a
command

much more useful in interactive systems

March 08 11

Additional Scheduling Criteria

There are also other factors to consider:
Priority/Importance of work – hopefully more important work can
be done first
Fairness – hopefully eventually everybody is served

Implement policies to increase priority as we wait longer… (this is
known as “priority aging”)

Deadlines – some processes may have hard or soft deadlines that
must be met
Overhead – e.g., data kept about execution activity, queue
management, context switches
Consistency and/or predictability may be a factor as well,
especially in interactive systems

March 08 12

Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time
Min response time

In other words, we want to maximize CPU utilization
and throughput AND minimize turnaround, waiting,
and response times

March 08 13

Scheduling Algorithms

First-Come, First-Served (FCFS)
Shortest Job First (SJF)
Shortest Remaining Time First (SRTF)
Priority
Round Robin (RR)
Multi-Level Queue (MLQ)
Multi-Level Feedback Queue (MLFQ)

March 08 14

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

March 08 15

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3
Average waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case

P1P3P2

63 300

March 08 16

Convoy Effect

time
5 10 15 20 25

10

3

1

4D

C

B

A

process

process service turnaround waiting
time ts time tt time tw

A 10 10 0
B 1 11 10
C 3 14 11
D 4 18 14

AVERAGE 13.25 8.75

A long CPU-bound job may
hog the CPU and force shorter
(or I/O-bound) jobs to wait for
prolonged periods. This in
turn may lead to a lengthy
queue of ready jobs, and
hence to the 'convoy effect'

March 08 17

FCFS Scheduling (Cont.)

FCFS is:
Non-preemptive
Ready queue is a FIFO queue
Jobs arriving are placed at the end of ready queue
First job in ready queue runs to completion of CPU burst

Advantages: simple, low overhead
Disadvantages: long waiting time, inappropriate for
interactive systems, large fluctuations in average
turnaround time are possible

March 08 18

Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time
Two schemes:

Nonpreemptive – once CPU is given to the process it cannot be
preempted until the process completes its CPU burst
Preemptive – if a new process arrives with CPU burst length less
than the remaining time of current executing process, preempt.
This scheme is know as the Shortest-Remaining-Time-First (SRTF)

SJF is optimal – gives minimum average waiting time for a
given set of processes

March 08 19

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

P1 P3 P2

73 160

P4

8 12

March 08 20

SRTF - Shortest Remaining Time First

Preemptive version of SJF
Ready queue ordered on length of time till completion
(shortest time to complete first, STCF)
Arriving jobs inserted at proper position
shortest job

Runs to completion (i.e. CPU burst finishes) or
Runs until a job with a shorter remaining time arrives (i.e.
placed in the ready queue)

March 08 21

Example of Preemptive SJF (i.e., SRTF)

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

Preemptive SJF (i.e., SRTF)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

March 08 22

Shortest-Job-First (SJF) Scheduling

Ready queue treated as a priority queue based on
smallest CPU-time requirement

Arriving jobs inserted at proper position in queue
Shortest job (1st in queue) runs to completion

In general, SJF is often used in long-term scheduling
Advantages: provably optimal w.r.t. average waiting time
Disadvantages:

Starvation is possible!
Unimplementable at the level of short-term CPU scheduling.
Can do it approximately: use exponential averaging to predict
length of next CPU burst
==> pick shortest predicted burst next!

March 08 23

Determining Length of Next CPU Burst

Can only estimate the length
Can be done by using the length of previous CPU
bursts, and using exponential averaging

:Define 5.
10 , 4.

burst CPU for the valuepredicted 3.

burst CPU)1 (i.e.,next for the valuepredicted 2.

burst CPU oflenght actual 1.

n

1

≤≤
=

+=

=

+

αα
τ

τ
th

th
n

th
n

n
n

nt

() nnn t ταατ 1 1 −+=+

α = 0 implies making no use of recent history (τ n+1 = τ n)
α = 1 implies τn+1 = tn (past prediction not used)
α = 1/2 equally weighted
Ex. Show that older bursts get less and less weight

March 08 24

Prediction of the Length of the Next CPU Burst

5.0=α

This figure is for 10 and 5.0 0 == τα

predicted

actual

March 08 25

Priority Scheduling

A priority number (integer) is associated with each process
Priority can be internally computed (e.g., may involve time limits,
memory usage) or externally (e.g., user type, funds being paid)
In SJF, priority is simply the predicted next CPU burst time

The CPU is allocated to the process with the highest priority
(smallest integer might mean highest priority) first
A priority scheduling mechanism can be

Preemptive or Nonpreemptive

Starvation is a problem, where low priority processes may
never execute
Solution: as time progresses, the priority of the long waiting
(starved) processes is increased. This is called priority aging

March 08 26

Priority Scheduling

5 10 15 20 25

process priority service turnaround waiting
time ts time tt time tw

A 4 10 18 8
B 3 1 8 7
C 2 3 7 4
D 1 4 4 0

AVERAGE 9.25 4.75

time

10

3

1

4D

C
B

A

process

March 08 27

Round Robin (RR)

RR is designed especially for time sharing systems
RR reduces the penalty that short jobs suffer with FCFS
by preempting running jobs periodically
Each process gets a small unit of CPU time (time quantum
or time slice), usually 10-100 milliseconds
The CPU blocks the current job when its reserved time-
slice is exhausted

The current job is then put at the end of the ready queue if it has
not yet completed
If the current job is completed, it will exit the system (terminate)

March 08 28

Example of RR with Time Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

The Gantt chart is:

Typically, higher turnaround than SJF, but better
response time

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

All arrive
at time 0

Average
waiting
time=?

March 08 29

Round Robin (RR) (cont.)

If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n -1)q time units
Performance: the critical issue with the RR policy is the
length of the quantum q

q is large: RR will behave like FCFS and hence interactive
processes will suffer
q is small: the CPU will be spending more time on context
switching

q must be large with respect to context switch, otherwise overhead
is too high

March 08 30

Time Quantum and Context Switch Time

March 08 31

Turnaround Time Varies With The Time Quantum

Increasing the time quantum does not necessarily
improve the average turnaround time!

March 08 32

Multilevel Queue Scheduling

Used in situations where processes are classified into
different groups (with different sch. needs)

March 08 33

Multilevel Queue Scheduling (cont.)

Ready queue is partitioned into separate queues and
each process is assigned permanently to one queue

For example, foreground (interactive) and background (batch)

Each queue has its own scheduling algorithm:
Foreground – RR (better response)
Background – FCFS (less overhead)

Scheduling must be done between the queues
Commonly using fixed-priority preemptive scheduling (foreground
then background)

Possibility of starvation

Time slice – each queue gets a certain amount of CPU time which
it can schedule amongst its processes

e.g., 80% to foreground in RR and 20% to background in FCFS

March 08 34

Multilevel Feedback Queue

In Multilevel Queue Scheduling, once a process is
assigned to a queue it is not allowed to change (less
overhead but inflexible)

E.g. a foreground and a background processes

Multilevel Feedback Queue allows a process to change
the queue

Allows processes to be separated according to their CPU
characteristics
E.g. if a process needs more time it can shifted to a lower-
priority queue; also if a process waits for long time in a low-
priority queue, it can be shuffled to a higher-priority queue
More general but more complex

March 08 35

Example of Multilevel Feedback Queue

Three queues:
Q0 – time quantum 8 milliseconds
Q1 – time quantum 16 milliseconds
Q2 – FCFS

Scheduling
A new job enters queue Q0 which is served FCFS. When it gains
CPU, the job receives 8 milliseconds. If it does not finish in 8
milliseconds, the job is moved to queue Q1

At Q1 , the job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2

March 08 36

Multiple-Processor Scheduling

CPU scheduling is more complex when multiple CPUs
are available
A multiprocessor system can have:

Homogeneous processors
Processors are identical in their functionality. Any available
processor can be used to run any of the processes in the ready
queue
In this class of processors, load sharing can occur

Heterogeneous processors
Processors are not identical. That is, only programs compiled for
a given processor's instruction set could be run on that processor

March 08 37

Multiple-Processor Scheduling

If identical processors are available, then:
Can provide a separate ready queue for each processor
Can provide a common ready queue

Enables load sharing. All processes go into one queue and are
scheduled onto any available processor
Asymmetric multiprocessing: only one processor accesses the system
data structures, alleviating the need for data sharing

Master-slave relationship

Symmetric multiprocessing: each processor is self-scheduling and may
have its own queue

We must insure that two processors do not select the same process
We must insure that processes are not lost from the ready queue

March 08 38

Real-Time Scheduling

Real-time computing is divided into two types:
Hard real-time systems: required to complete a critical task within
a guaranteed amount of time
Soft real-time computing: requires that critical processes receive
priority over less fortunate ones

Hard real-time systems:
Resource reservation

Soft real-time systems are less restrictive
The dispatch latency must be small
The priority of real-time processes must not degrade

Disallow aging

The priority of non-real-time processes might degrade

March 08 39

Algorithm Evaluation

How do we select a CPU-scheduling algorithm for a
particular system?
We must define the measures to be used in selecting the
CPU scheduler and we must define the relative
importance of these measures
After the selected measures have been defined, than we
can evaluate the various algorithms under consideration
Evaluation methods:

Deterministic modeling
Queuing models
Simulation
Implementation

March 08 40

Algorithm Evaluation – Deterministic Modeling

One type of analytical evaluation
Deterministic modeling takes a particular predetermined
workload and defines the performance of each algorithm
for that workload
Deterministic modeling is

Simple and fast
Gives exact number allowing algorithms to be compared

BUT,
Requires exact input data
Its answers apply to only those input cases

In general, deterministic modeling is too specific and
requires exact knowledge

March 08 41

In class activity

Process Burst Time
P1 10
P2 29
P3 3
P4 7
P5 12

Average waiting time for each scheduling algorithm:
FCFS, SJF, RR

March 08 42

Algorithm Evaluation – Queuing Models

Since processes running on systems vary with time, there
is NO static set of processes to use for deterministic
modeling
We can determine some parameters such as:

The distribution of the CPU burst, the distribution of the I/O burst

These distributions can be measured or estimated
For example, we have a distribution for CPU burst (service
time), arrival time, waiting time, and so on
Therefore, the computer system can be described by a
network of servers

March 08 43

Algorithm Evaluation – Queuing Models

Queuing analysis can be useful in comparing the
performance of scheduling algorithms
But, queuing analysis is still only an approximation of the
real system

Since distributions are only estimates of the real pattern

input output

queue

server

March 08 44

Algorithm Evaluation – Simulations

Give more accurate results
Involve programming a model of the computer system
Software data structures represent the major components of the system;
simulator has a variable representing a clock
The common method to generate the data to drive the simulation is using
a random-number generator

According to a probability distribution, the random-number generator is
programmed to generate processes, CPU burst times, arrivals, etc

A distribution-driven simulation may be inaccurate
The distribution indicates only how many and not the order
To resolve this problem, we can use a trace tape obtained by monitoring the
real system and recording the sequence of the actual events

Simulation can be expensive; requires hours of computer time and large
amounts of storage space

March 08 45

Evaluation of CPU Schedulers by Simulation

March 08 46

Algorithm Evaluation – Implementation

The only completely accurate way to evaluate a
scheduling algorithm is to code it, deploy it in the real OS,
and see how it works
The major difficulty is the cost involved

Coding the algorithm and modifying the OS to support it
Users’ reaction to a constantly changing OS may not be accepted

Another difficulty is that the environment in which the
algorithm is used will change as new

New programs are coded
Performance of the scheduler

March 08 47

Operating Systems Examples

March 08 48

Solaris 2 Scheduling

Uses priority-based thread
scheduling
Uses four classes, in order of
priority:

Real time
System
Time sharing
Interactive

Within each class, there are
different priorities and
different scheduling algorithms
Default class for a process is
‘time sharing’
In time sharing: assign time
slices of different lengths using
a multilevel feedback queue

March 08 49

Windows 2000 Priorities

March 08 50

Linux Scheduling for time-sharing processes

When a new task must be chosen, the process with the most
credits is selected
Every time a timer interrupt occurs, the currently running
process loses one credit
When its credit reaches 0 it is suspended and another
process gets a chance
If no runnable process has any credits, every process is re-
credited using the formula:

credits=(credits/2) + priority
This mixes the process‘s behaviour history (half its earlier
credits) with its priority

March 0851

End of Chapter 5

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and
G. Gagne. Addison Wesley, 2005

