
March 08 1

Chapter 4: Threads

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the
textbook and its complementary resources

March 08 2

Recap

Process Concepts
Process Scheduling
Process Creation and Termination
Inter-process Communication
Communication in Client-Server Systems

March 08 3

Objectives/Outline

Objectives
To introduce the concept of
threads and multithreading
models

To discuss the APIs for
Pthreads, Win32 and Java

To explore how Windows and
Linux OSs support threads at
the kernel level

Outline
Overview
Multithreading Models
Thread Libraries
Threading Issues
OS Examples

March 08 4

Overview

A thread is a basic unit of CPU utilization and
sometimes is called a lightweight process (LWP)
A traditional (heavyweight) process has a single thread
of control
Each thread has:

thread ID, program counter, register set, and stack
It shares with other threads belonging to the same
process:

code section, data section, other OS resources such as open
files and signals

If the process has multiple threads of control, it can do
more than one task at a time

March 08 5

Overview (Cont.): Single threaded vs.
multithreaded

A simple way to think about a process is as an address space (containing
code, data, etc.) in which there is a single thread of execution
The thread is the active part of a process

March 08 6

Overview (Cont.): Threads Versus Processes

March 08 7

Overview (Cont.): Motivation

A process can do several things concurrently by running
more than a single thread
Each thread is a different stream of control that can execute
its instructions independently
Examples

A web Browser may have:
A thread to display images or text
A thread to retrieve data from the network

Word processor may have
A thread to display graphics
A thread to respond to keystrokes from the user
A thread to perform spelling and grammar checking

March 08 8

Overview (Cont.): Motivation

Benefits
Responsiveness: multithreading is useful in an interactive application.
E.g., a multithreaded web browser can allow user interaction even
though an image is still downloading
Resource sharing: threads share memory and resources allocated to
the process to which they belong, e.g. code sharing, where different
threads of activity all within the same address space
Economy: allocating memory and resources for process creation is
costly but it is more economical to create and context-switch threads
Utilization of multiprocessor architectures: threads may run in parallel
on different processors; hence increase the utilization

March 08 9

Multithreading Models

Support of thread can be either at user level (user threads) or at the
kernel level (kernel threads)
User threads:

Supported above the kernel and managed without kernel support
Implemented by the thread library at the user level
User thread are generally fast to create and manage
Example of user thread libraries: Pthreads and Mach C-threads

Kernel threads:
The kernel performs creation, scheduling, and management
Supported by the OS such as Windows XP, Linux, Mac OS X, Solaris and
True64 Unix

Relationship between user threads and kernel threads
Many-to-one model
One-to-one model
Many-to-many model

March 08 10

Multithreading Models: Many-to-One

Maps many user threads to one
kernel thread
Thread management is done by
the thread library in user space;
Efficient
Drawbacks

Entire process will block if a
thread makes a blocking system
call
Unable to run multiple threads
in parallel on multiprocessors

Example: Green threads library
for Solaris

March 08 11

Multithreading Models – One-to-One

Maps each user thread to a kernel thread
Provides more concurrency than the many-to-one model (i.e., the kernel
allows another thread to run when a thread makes a blocking system call)
Allows multiple threads to run in parallel on multiprocessors
Drawback

creating a user thread requires creating the corresponding kernel thread which
can burden the overall system performance. Therefore, most implementations
of this model restrict the number of threads supported by this system

March 08 12

Multithreading Models – Many-to-Many

multiplex many user-level
threads to a smaller or equal
number of kernel threads
The number of kernel threads
may be specific to either a
particular application or a
particular machine
An application may be allocated
more threads on a
multiprocessor than a
uniprocessor machine
Tow-level model: a popular
variation of many-to-many
which allows ULT to bound to
KTL
Example: Solaris 2 OS

March 08 13

Quiz

March 08 14

Advantages and inconveniences of ULT

Advantages
Thread switching does
not involve the kernel:
no mode switching
Scheduling can be
application specific:
choose the best
algorithm.
ULTs can run on any OS.
Only needs a thread
library

Inconveniences
Most system calls are
blocking and the kernel
blocks processes. So all
threads within the process
will be blocked
The kernel can only assign
processes to processors.
Two threads within the
same process cannot run
simultaneously on two
processors

L4.2

March 08 15

Advantages and inconveniences of KLT

Advantages
the kernel can
simultaneously schedule
many threads of the same
process on many processors
blocking is done on a
thread level
kernel routines can be
multithreaded

Inconveniences
Thread switching within
the same process involves
the kernel. We have 2
mode switches per thread
switch: user to kernel and
kernel to user.
This results in a
significant slow down

March 08 16

Thread Libraries

A thread library provides the programmer with an API for
creating and destroying threads
passing messages and data between threads
scheduling thread execution
saving and restoring thread contexts

Implementing a thread library
User-level library (with no kernel support) – the code and data
structures for the library exist in the user space; invoking a function
results in local function call in the user space
Kernel-level library – the code and data structures for the library exist
in the kernel space; invoking a function results in a system call to the
kernel

Thread libraries: Pthreads, Win32, Java

March 08 17

Pthreads

Posix Threads (pthreads) is a standardized programming interface
for UNIX systems,

the interface is specified by the IEEE 1003.1c standard (1995)
this standard specifies behavior of the thread library
implementations which adhere to this standard are referred to as POSIX
threads, or Pthreads

Pthreads is:
Widely used threads package
defined as a set of C language programming types and procedure calls,
implemented with a pthread.h header
Conforms to the Posix standard
Sample Calls: pthread_create(), pthread_exit(), pthread_join(), etc.
Typical used in C/C++ applications

Examples of OS implementing Pthreads: Solaris 2, Linux, Mac OS X,
True64 Unix and shareware implementation for Windows

March 08 18

Pthreads (Cont.)

Multithreaded C program using Pthreads API
int sum;
#include <pthread.h>
void main(int argc, char *argv[]) {

pthread_t tid; pthread_attr_t attr;
…
pthread_attr_init(&attr); /*get default attributes
pthread_create(&tid, &attr, runner, argv[1]); /* create thread*/
pthread_join(tid, NULL); /* wait for thread to finish*/
printf(“sum = %d”, sum)

}

void *runner(void *param) {
int i, upper = atoi(param), sum = 0;
if (upper > 0)

for(i=1;i<=upper;i++)
sum+=i;

pthread_exit(0);
}

Function to
run in the
thread created ∑

=

=
N

i
isum

0

March 08 19

Win32 Threads

Similar to pthreads in several ways
Kernel-level library available on Windows systems

#include <windows.h>
……..
void main(int argc, char *argv){
………
ThreadHandle = CreateThread(……., Summation, …….)
if(ThreadHandle ! = NULL){

WaitForSingleObject(ThreadHandle, INFINITE);
CloseHandle(ThreadHandle);
printf(“sum = %d”, Sum);

}
……..

March 08 20

Java Threads

Java language and its API provide a rich set of features for creating
and managing threads
As JVM is running on the top of host OS, Java thread API is typically
implemented using a thread library available on the host system

Windows: Java Threads API uses Win32 API
Unix and Linux: Java Threads API uses Pthread

Thread is a fundamental model of program execution in Java
All Java programs comprise of at least a single thread

Java threads are managed by the JVM
Two approaches to create threads in Java

Create a new class that extends Thread class and override the run()
method
Define a class that implements Runnable interface (and define the run()
method)

A thread is created by creating an instance of the Thread class and passing a
Runnable object; then call the start() method to actually create the thread

March 08 21

Java Threads (Cont.)

class Sum{

}

class Summation implements Runnable{
…..
public void run(){

}
}

public class Driver{
public static void main(String[] args){

….

Thread thd = new Thread(new Summation(…, ….);
thd.start(); /* start the thread, here the thread is actually created */
….
try{

thd.join(); /* wait for the new thread to finish */
……….

}catch(InterruptedException ie){}
}

}

Define a class that implements
Runnable and pass an instance
of it to Thread class

March 08 22

Java Thread States

March 08 23

Outline

Threading Issues
Semantics of fork() and exec() system calls
Thread cancellation
Signal handling
Thread pools
Thread-specific data
Scheduler activations

OS Examples

L4.3

March 08 24

Review

How Unix shell runs a program:

March 08 25

Threading Issues: fork and exec system calls

Semantics of fork and exec system calls change in multithreaded
program
When a thread (associated with process A) calls fork, two things can
happen:

The new process duplicates all threads associated with process A
The new process will be single-threaded

Some Unix operating systems support these two versions of fork
The exec system call is used after a fork system call and typically work
as described in a single-thread program

It replaces the entire process (including all threads) with the program
specified in the parameter to exec
It loads a binary file into memory
It destroys the memory image containing the exec system call
It starts its execution

March 08 26

Threading Issues – Cancellation

Thread cancellation is the task of terminating a thread before it is
completed

For example: assume that multiple threads are searching a database. As
soon as one thread returns the search result, we can terminate the
remaining threads

A thread to be cancelled is referred to as a target thread
Thread cancellation can happen in two ways:

Asynchronous cancellation: One thread immediately terminates the
target thread
Deferred cancellation: the target thread can periodically checks whether
it should terminate; allows termination to happen in an orderly manner

March 08 27

Threading Issues – Cancellation (cont.)

Thread cancellation is not as easy as it appears
What about resources allocated to a canceled thread
A thread might be cancelled while in the middle of updating a
shared variable

Becomes especially troublesome with asynchronous
cancellation
An OS usually reclaim system resources from a cancelled
thread. But often does not reclaim all resources. Why?
Deferred cancellation provides safer cancellation

A thread check whether it should be canceled at points when it
can be cancelled safely (cancellation points)
The Pthreads API provides cancellation points

March 08 28

Threading Issues – Signal Handling

A signal is used in Unix to notify a process that a
particular event has occurred

illegal memory access, division be zero, terminating a process
with Ctrl-C, time expire

All signals follow the same pattern
A signal is generated by the occurrence of a particular event
A generated signal is delivered to a process
Once delivered, the signal must be dealt with

A signal might occur synchronously and asynchronously

March 08 29

Threading Issues – Signal Handling (cont.)

Synchronous signals:
Generated by events internal to the running process
Synchronous signals are delivered to the same process that
performed the operation causing the signal
Examples include illegal memory access, division be zero, etc

Asynchronous signals:
Generated by events external to the running process
Examples include terminating a process by specific keystrokes
(e.g., control c), time expire
Asynchronous signals are more complicated

March 08 30

Threading Issues – Signal Handling (cont.)

Every signal, whether synchronous or asynchronous, is
handled in two ways

A default signal handler
A user-defined signal handler

By default, every signal has a default signal handler that
is run by the kernel
This default signal handler can be overwritten by the
user-defined signal handler
Single-threaded programs: straightforward, signals are
always delivered to the process
Multithreaded programs: more complicated

March 08 31

Threading Issues – Signal Handling (cont.)

When a signal is delivered to a multithreaded program,
the following can happen:

Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread
Deliver the signal to certain threads in the process
Deliver the signal to a specific thread

Examples:
A terminating signal should be sent to all thread in the process
Solaris 2 implements the fourth option (i.e., creates a special
thread within each process solely for signal handling)

March 08 32

Threading Issues – Thread Pools

Creating threads can be time consuming
Too many threads can bog down the system
Thread pools help with this problem
Threads are pre-allocated
The number of threads available at a given time is fixed
Some systems may adjust the thread pool size
depending on usage

March 08 33

Threading Issues – Thread Specific Data

Threads belonging to the same process share the
process data; benefit multithreaded programs
However, in some instances, each thread might need
its own copy of data.

For example, a transaction processing multithreaded
application might service each transaction in a separate thread

Most thread libraries such as Win32, Pthreads, and Java
provide support for thread-specific data

March 08 34

Threading Issues – Scheduler Activations

Both many-to-many and two-level models
require communication between the
kernel and thread library
Such coordination allows the appropriate
number of kernel threads to be
dynamically adjusted to ensure best
performance
Scheduler activation

The kernel provides an application with a
set of virtual processors (LWPs)
The application can schedule user threads
onto an available LWP

Scheduler activations provide upcalls –
a communication mechanism from the
kernel to the thread library
Upcall handler must run on a virtual
processor

K

LWP

March 08 35

OS Examples: Windows XP Threads

Win32 API is the primary API for the family of Microsoft OSs
(Windows 95, 98, NT, 2000, XP)
Windows XP application runs as a separate process that may
contain one or more threads
Windows XP uses one-to-one model to map each ULT to an
associated KLT
Each thread contains

Thread ID
Register set (representing the status of the processor)
Separate user and kernel stacks
Private data storage area

The thread context: register set, stacks, private storage area

March 08 36

OS Examples: Linux Threads

Linux provides fork() system call for duplicating a
process
Linux does not distinguish between a process and a
thread

Linux uses concept of task rather than thread or process.
Clone() system call for creating threads and processes

Which resources are shared is controlled by a set of flags
passed to the system call
Using clone is equivalent to creating thread

If parent and child tasks share file system information, memory
space, signal handlers, set of open files

Using clone is equivalent to creating a process using fork()
If none is shared

March 0837

End of Chapter 4

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and
G. Gagne. Addison Wesley, 2005

