
March 08 OS:Processes 1

Chapter 3: Processes

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the
textbook and its complementary resources

March 08 OS:Processes 2

Recap

OS Services
Major components of OS

User Interface, System Calls and System Programs

Operating System Design and Implementation
Operating System Structures

Simple, layered, microkernel, modules, VMs

Operating System Generation
System Boot

March 08 OS:Processes 3

Objectives/Outline

Objectives
Introduce the notation of a
process
Describe various features of
processes including
scheduling, creation and
termination, and
communication
Describe communication in
Client/Server systems

Outline
Process Concept
Process Scheduling
Operations on Processes
Cooperating Processes
Interprocess Communication
Communication in Client-
Server Systems

March 08 OS:Processes 4

Process Concept

An operating system executes a variety of programs
What to call all the CPU activities?

Batch system – jobs
Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably
Early computer systems (a single process) vs. modern time-sharing
computer systems (multiple concurrent processes)
Process – a program in execution

A program or executable file is not by itself a process
Different users may be running different copies of some program
The same user may be running many copies of some program
A process may spawn many processes as it runs

Old OS: Process execution must progress in sequential fashion (single
thread)
Modern OS: allow multithreaded processes

March 08 OS:Processes 5

Process in Memory

A process includes:
process code (text section)
program counter (current
activity)
content of the processor’s
registers
process stack – holds
temporary data e.g. function
parameters, return addresses,
local variables
Data section – holds global
variables
process heap – memory
dynamically allocated during
run time

March 08 OS:Processes 6

Process State

As a process executes, it changes state
new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur
(such as I/O completion)
ready: The process is waiting to be assigned to a processor
terminated: The process has finished execution (halted)

These names are arbitrary and may vary across
operating systems

March 08 OS:Processes 7

Process State Diagram

March 08 OS:Processes 8

Process Control Block (PCB)

A repository for any information associated with
each process including:

Process state
Program counter (PC)
CPU registers

E.g. accumulators, index registers, general-purpose
registers

CPU scheduling information
E.g. process priority, pointers to scheduling queues

Memory-management information
E.g. base and limit registers, page tables

Accounting information
E.g. account numbers, amount of CPU, time limits

I/O status information
E.g. a list of I/O devices allocated to the process, list
of open files

March 08 OS:Processes 9

CPU Switch from Process to Process (Sequence
Diagram)

March 08 OS:Processes 10

Process Scheduling

The objective of multiprogramming is to have some
process running at all the times; thus maximizing the
CPU utilization
The objective of time sharing is to switch between
processes so frequently that users can interact with
each program while it is running
Process scheduler: selects a process from the available
set of processes for program execution on the CPU
A single-processor CPU will never have more than one
process running at any given time; the rest of
processes will be waiting until the CPU is free

March 08 OS:Processes 11

Process Scheduling Queues

Job queue – set of all processes in the system
Ready queue – set of all processes residing in main
memory and are ready and waiting to execute
Device queue – set of processes waiting for a particular
I/O device; each I/O has its own device queue

Processes migrate among the various queues
throughout its lifetime

March 08 OS:Processes 12

Ready Queue and Various I/O Device Queues

A queue is
generally
stored as a
linked list
The queue
header has a
pointer to the
first and final
PCBs

March 08 OS:Processes 13

Queueing Diagram

A common representation of process scheduling

March 08 OS:Processes 14

Schedulers

A scheduler can be:
Long-term scheduler (or job scheduler) –

selects which processes should be brought into the ready queue
executed much less frequently (seconds, minutes) ⇒ (may be slow)
controls the degree of multiprogramming
Select a good mix of processes: I/O-bound process (spends more time
doing I/O than computations, many short CPU bursts) and CPU-bound
process (spends more time doing computations; few very long CPU
bursts)

Short-term scheduler (or CPU scheduler)
selects which process should be executed next and allocates CPU
executed more frequently (milliseconds) ⇒ (must be fast)

Medium-term scheduler
may exist on some time sharing systems
removes a process temporarily from memory or CPU contention to reduce
multiprogramming and later resume execution where it is left off
(swapping)

March 08 OS:Processes 15

Addition of Medium-Term Scheduling

March 08 OS:Processes 16

Context Switch

When CPU switches to
another process, the system
must save the state of the
old process and load the
saved state for the new
process
Context-switch time is
overhead; the system does
no useful work while
switching
Time dependent on
hardware support

March 08 OS:Processes 17

Process creation
Process termination
Interprocess communication

W3.L2

March 08 OS:Processes 18

Process Creation

In most OS, processes
can execute concurrently, and
may be created and deleted dynamically

A process may create several new processes (via
create-process system call)
Parent process create children processes, which, in turn
create other processes, forming a tree of processes
Resource sharing (CPU, memory, files, I/O devices)

Parent and children share all resources,
Children share subset of parent’s resources, or
Parent and children share no resources

March 08 OS:Processes 19

Example: A tree of processes on a typical Solaris system

Each process has a
process name and a
process identifier
(PID)
ps -el
list complete
information for all
active processes

March 08 OS:Processes 20

Process Creation (Cont.)

Execution
Parent and children execute concurrently, or
Parent waits until some or all of its children terminate

Address space
Child duplicate of parent
Child has a program loaded into it

UNIX examples
fork system call creates new process
exec system call used after a fork to replace the process’
memory space with a new program (overlay)

March 08 OS:Processes 21

Example: Process Creation on Unix

March 08 OS:Processes 22

Example: Process Creation on Unix (Cont.):
C Program Forking Separate Process

int main() {
Pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}

March 08 OS:Processes 23

Process Termination

Process executes last statement and asks the operating
system to delete it (via exit() system call)

Output data from child to parent (status code)
Process’ resources are deallocated by operating system

Parent may terminate execution of children processes
(abort)

Child has exceeded allocated resources
Task assigned to child is no longer required
If parent is exiting

Some operating system do not allow child to continue if its parent
terminates

All children terminated - cascading termination

March 08 OS:Processes 24

Cooperating Processes

Independent process cannot affect or be affected by the execution of
another process
Cooperating process can affect or be affected by the execution of
another process
Producer-Consumer Problem

Paradigm for cooperating processes, producer process produces information
that is consumed by a consumer process
E.g. an assembler produces object modules that are consumed by a loader.

Advantages of process cooperation
Information sharing
Computation speed-up
Modularity
Convenience

Cooperating processes require inter-process communication (IPC)
mechanism

March 08 OS:Processes 25

IPC Models

(a) message passing, (b) shared memory
Many systems allow both

March 08 OS:Processes 26

IPC via Shared Memory

One process creates a shared memory in its address space and allows
others to use it
Advantages

Allows max. speed and convenience (at memory speed on the same computer)
System calls are used only to establish shared memory
No assistance from the kernel is required after that
Processes have complete control and agreement on the form and location of
the data

Detriments
Writing must be mutually exclusive to prevent a race condition leading to
inconsistent data views.

Implementation
Unbounded-buffer places no practical limit on the size of the buffer

producer: no wait
consumer: wait when buffer is empty

Bounded-buffer assumes that there is a fixed buffer size
producer: wait when buffer is full
consumer: wait when buffer is empty

W3.L3

March 08 OS:Processes 27

Bounded-Buffer – Shared-Memory Solution

Shared data
#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Implemented as a circular array
can only use BUFFER_SIZE-1 elements
Empty: in == out
Full: (in+1) % BUFFER_SIZE == out

in

out

March 08 OS:Processes 28

Bounded-Buffer: Producer process

while (true) {
/* Produce an item */
while ((in + 1) % BUFFER_SIZE == out)

; /* do nothing -- no free buffers */
buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;

}

March 08 OS:Processes 29

Bounded Buffer: Consumer Process

while (true) {
while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER_SIZE;
return item;

}

March 08 OS:Processes 30

IPC via Message Passing

Processes communicate with each other without resorting to shared variables
If P and Q wish to communicate, they need to:

establish a communication link between them
exchange messages via send/receive

Advantages
Communication provides a way to synchronize, or coordinate, various activities.
Good for exchanging smaller amount of data
No conflict need to be avoided
Easier to implement for inter-computer communication
Slower (via system calls)

Detriments
May have deadlock - each process waiting for a message from the other process.
May have starvation - two processes sending a message to each other while another
process waits for a message.

Implementation of communication link
physical (e.g., shared memory, hardware bus, or network)
logical (e.g., logical properties)

March 08 OS:Processes 31

Implementation Questions

How are links established?
Can a link be associated with more than two processes?
How many links can there be between every pair of
communicating processes?
What is the capacity of a link?
Is the size of a message that the link can accommodate
fixed or variable?
Is a link unidirectional or bi-directional?

March 08 OS:Processes 32

Direct Communication

Processes must name each other explicitly:
send (P, message) – send a message to process P
receive(Q, message) – receive a message from process Q

Properties of communication link
Links are established automatically
A link is associated with exactly one pair of communicating
processes
Between each pair there exists exactly one link
The link may be unidirectional, but is usually bi-directional

March 08 OS:Processes 33

Indirect Communication

Messages are directed and received from mailboxes
(also referred to as ports)

Each mailbox has a unique id
Processes can communicate only if they share a mailbox

Properties of communication link
Link established only if processes share a common mailbox
A link may be associated with many processes
Each pair of processes may share several communication links
Link may be unidirectional or bi-directional

March 08 OS:Processes 34

Indirect Communication

Operations
create a new mailbox
send and receive messages through mailbox
destroy a mailbox

Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from
mailbox A

March 08 OS:Processes 35

Indirect Communication

Mailbox sharing
P1, P2, and P3 share mailbox A
P1, sends; P2 and P3 receive
Who gets the message?

Solutions
Allow a link to be associated with at most two processes
Allow only one process at a time to execute a receive operation
Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

March 08 OS:Processes 36

Synchronization

Message passing may be either blocking or non-blocking
Blocking is considered synchronous

Blocking send has the sender block until the message is received
Blocking receive has the receiver block until a message is available

Non-blocking is considered asynchronous
Non-blocking send has the sender send the message and continue
Non-blocking receive has the receiver receive a valid message or
null

March 08 OS:Processes 37

Buffering

Queue of messages attached to the link; implemented
in one of three ways
1. Zero capacity – 0 messages [no buffering]

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages

Sender must wait if link full
3. Unbounded capacity – infinite length

Sender never waits

March 08 OS:Processes 38

Client-Server Communication

In addition to shared memory and message passing,
processes in C/S systems can communicate using:

Sockets
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI) in Java

March 08 OS:Processes 39

Socket Communication

A socket is defined as
an endpoint for
communication
Concatenation of IP
address and port
The socket
161.25.19.8:1625
refers to port 1625
on host 161.25.19.8
Communication
consists between a
pair of sockets

March 08 OS:Processes 40

Socket Communication (Cont.)

port number port number

• Application references a
socket through a descriptor
• Socket bound to a port number

Client Process

Socket

Socket
interface

User

Kernel

Server Process

User

Kernel

Underlying
communication

protocols

Underlying
communication

protocols

Communications
network

Socket

March 08 OS:Processes 41

Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems.

A client can invoke a procedure on a remote host as it does locally
Similar in many ways to IPC by passing messages and usually built
on top of such systems

Messages have no longer been just packets of data
Messages are addressed to an RPC daemon listening to a port on the
remote system
Each message is well structured and contains: identifier of the
function to be executed, parameters passed to that function, the
output is sent back on a separate message

Stubs – client-side proxy for the actual procedure on the server.
The client-side stub locates the server and marshals the
parameters.
The server-side stub receives this message, unpacks the
marshaled parameters, and performs the procedure on the server.

March 08 OS:Processes 42

Execution of RPC

March 08 OS:Processes 43

Remote Method Invocation

Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.
RMI allows a Java program on one machine to invoke a
method on a remote object (in a different JVM).

March 08 OS:Processes 44

RMI vs. RPC

RPC supports procedural programming (only remote
procedures or functions can be called)
RMI is object based (invoke methods on remote
objects)
Parameters to RPC are primitive or ordinary data
structures
Parameters to RMI can be objects as well
RMI allow developing distributed applications across a
network

March 08 OS:Processes 45

Marshalling Parameters

RMI is implemented using stubs and skeletons to be transparent for the
client and the server
A stub is a proxy
for the remote
object; resides on
the client side;
creates a parcel
and sends it to the
skeleton
A skeleton resides
on the server;
receives and
unpacks the
parcel; invokes the
method; marchals
the return value

March 08 OS:Processes 46

End of Chapter 3

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and
G. Gagne. Addison Wesley, 2005

