
March 08 OS: Operating-System Structures 1

Operating-System Structures

Chapter 2:

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the
textbook and its complementary resources

March 08 OS: Operating-System Structures 2

Recap

From: OS by Tanenbaum, 2008

March 08 OS: Operating-System Structures 3

Objectives

Describe the services provided by an operating
system to users, processes, and other systems
Discuss the various ways of structuring an operating
system
Explain how operating systems are installed and
customized, and how they boot

March 08 OS: Operating-System Structures 4

Outline

Operating System Services
User Operating System Interface
System Calls
Types of System Calls
System Programs
Operating System Design and Implementation
Operating System Structure
Virtual Machines
Operating System Generation
System Boot

March 08 OS: Operating-System Structures 5

Operating System Services

One set of OS services provides functions that are helpful to
the user:

User interface (UI): CLI, GUI, Batch

Program execution: Load a program into memory, run that program,
end execution either normally or abnormally (indicating error)

I/O operations: Provide a means to do I/O required for a running
program (process)

File-system manipulation: Programs need to read/write files and
directories (folders), create/delete them, search them, list file
information, manage access permissions (allow/deny access based on
ownership).

March 08 OS: Operating-System Structures 6

Operating System Services (Cont.)

Communications:
Processes may exchange information, on the same computer or
between computers over a network
via shared memory or through message passing

Error detection:
OS needs to be constantly aware of possible errors (may occur in
the CPU and memory hardware, I/O devices, user program)

E.g. power failure, lack of paper in the printer, arithmetic overflow

For each type of error, OS should take the appropriate action to
ensure correct and consistent computing
Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

March 08 OS: Operating-System Structures 7

Operating System Services (Cont.)

Another set of OS functions exists for ensuring efficient operation of the
system itself

Resource allocation
OS allocate resources to multiple users or jobs
Some resources may have special allocation code, e.g. CPU cycles, main memory,
and file storage
Other resources may have general request and release code, e.g. I/O devices
(such as printers, modems, USB storage drives)

Accounting
Keeping track of which users use how much and what kinds of computer
resources
For billing users or accumulating usage statistics

Protection and security
Protection involves ensuring that all access to system resources is controlled

Not possible for a process to interfere with others or the OS itself
Security of the system from outsiders requires user authentication, extends to
defending external I/O devices from invalid access attempts
If a system is to be protected and secure, precautions must be instituted
throughout it. A chain is only as strong as its weakest link!

March 08 OS: Operating-System Structures 8

How OS services are made available?

UserUser

UIUI

Systems CallsSystems Calls

System ProgramsSystem Programs

User ProgramsUser Programs

APIAPI

HardwareHardware

March 08 OS: Operating-System Structures 9

Operating-System User Interfaces

User-OS InteractionUser-OS Interaction

Batch ModeBatch ModeInteractive ModeInteractive Mode

CLICLI GUIGUI

March 08 OS: Operating-System Structures 10

Command Line Interface (CLI)

CLI is also called command interpreter
CLI allows direct command entry
Sometimes implemented in the kernel, sometimes by systems
program
Sometimes multiple interpreters with minor differences are
implemented – called shells

E.g. in Unix/Linux: Bourne shell, C shell, Bourne-Again shell, Korn shell

Primarily fetches a command from user and executes it
E.g. manipulating files: create, delete, copy, move, execute, print, etc
Two general ways to implement commands

built-in: the interpreter itself contains the code of the command
system programs: commands are separate external programs loaded into
memory and executed; adding new features doesn’t require shell modification

March 08 OS: Operating-System Structures 11

User Operating System Interface - GUI

User-friendly desktop metaphor interface
Usually mouse, keyboard, and monitor
Icons represent files, programs, actions, etc
Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)
First appeared in the early 1970s at Xerox PARC on Xerox Alto
computers; gain widespread use with Mac OS; then with Windows OS

Many systems now include both CLI and GUI interfaces
Microsoft Windows is GUI with CLI “command” shell
Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath
and shells available
Solaris is CLI with optional GUI interfaces (X-Windows, CDE, KDE,
GNOME)

March 08 OS: Operating-System Structures 12

System Calls

Programming interface to the services provided by the OS
Routines generally written in a high-level language (C or
C++); some low-level tasks are programmed in assembly
Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

Why use APIs rather than system calls?

March 08 OS: Operating-System Structures 13

Example of System Calls

System call sequence to copy the contents of one file to
another file

March 08 OS: Operating-System Structures 14

Example of Standard API

Consider the ReadFile() function in the Win32 API—a function for
reading from a file

A description of the parameters passed to ReadFile()
HANDLE file—the file to be read
LPVOID buffer—a buffer where the data will be read into and written from
DWORD bytesToRead—the number of bytes to be read into the buffer
LPDWORD bytesRead—the number of bytes read during the last read
LPOVERLAPPED ovl—indicates if overlapped I/O is being used

March 08 OS: Operating-System Structures 15

System Call Implementation

Typically, a number associated with each system call
System-call interface maintains a table indexed according to these
numbers

The system call interface invokes intended system call in
OS kernel and returns status of the system call and any
return values
The caller need know nothing about how the system call is
implemented

Just needs to obey API and understand what OS will do as a result
call
Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built into
libraries included with compiler)

March 08 OS: Operating-System Structures 16

API – System Call – OS Relationship

March 08 OS: Operating-System Structures 17

Standard C Library Example

C program invoking printf() library call, which calls
write() system call

March 08 OS: Operating-System Structures 18

System Call Parameter Passing

Often, more information is required than simply identity of
desired system call

Exact type and amount of information vary according to OS and call
Three general methods used to pass parameters to the OS

Simplest: pass the parameters in registers
In some cases, may be more parameters than registers

Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

This approach taken by Linux and Solaris
Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system
Block and stack methods do not limit the number or length of
parameters being passed

March 08 OS: Operating-System Structures 19

Parameter Passing via Table

March 08 OS: Operating-System Structures 20

Types of System Calls

Process control
File management
Device management
Information maintenance
Communications

March 08 OS: Operating-System Structures 21

MS-DOS execution

(a) At system startup (b) running a program

March 08 OS: Operating-System Structures 22

FreeBSD Running Multiple Programs

March 08 OS: Operating-System Structures 23

System Programs

System programs provide a convenient environment for
program development and execution.
Some of them are simply user interfaces to system calls;
others are considerably more complex
Most users’ view of the operation system is defined by
system programs, not the actual system calls

March 08 OS: Operating-System Structures 24

System Programs (Cont.)

Various commands that be divided into:
File management - generally manipulate files and directories, e.g.
delete, copy, rename, print, etc
Status information, e.g. date, time, available disk space, detailed
performance, configuration information (registry), etc
File modification, e.g. edit, modify, and search file content, etc
Programming language support, e.g. compilers, assemblers,
interpreters, etc
Program loading and execution, e.g. absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language
Communications, e.g. among processes, users, computer systems
System utilities (Applications programs), e.g. web browsers, word
processors, games

March 08 OS: Operating-System Structures 25

OS Design and Implementation

There are several challenges facing OS design and Implementation
No complete solutions to such problems, but some approaches have
proven successful
Internal structure of different Operating Systems can vary widely for
different environments
Deign is affected by choice of hardware, and type of system (batch,
time shared, single user, multi-user, distributed, real time, general
purpose)
Start design by defining goals and specifications (requirements)

User goals vs. System goals
OS should be convenient to use, easy to learn, reliable, safe, and fast
OS should be easy to design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient

Functional vs. non-functional requirements
Specifying and designing an OS is highly creative – general principles
have been developed in the field of Software Eng.

March 08 OS: Operating-System Structures 26

OS Design and Implementation (Cont.)

An important principle to separate policies from
mechanisms
Policies decide what will be done
Mechanisms determine how to do something
Polices are likely to change across places or over time

Worst case – each policy change require a mechanism change
Best case (desirable) – mechanism is insensitive to changes in
policy

Separation of policy from mechanism is a very important
principle for flexibility if policy decisions are to be
changed later

March 08 OS: Operating-System Structures 27

OS Design and Implementation (Cont.)

After design, the OS is implemented:
assembly language, high-level general-purpose languages (e.g.
C, C++)

Example
MS-DOS is written in Intel 8088 assembly language (hence can
be used only for Intel family of CPUs)
Linux is written mostly in C and hence is available for a number
of different CPUs (e.g. Intel 80X86, SPARC, MIPS RX000)
Windows XP is written mostly in C

Q. Discuss the advantages and potential disadvantages
of using a high-level language in implementing OS.

March 08 OS: Operating-System Structures 28

OS Design and Implementation (Cont.)

Performance improvement
Better data structure and algorithms
Modern compilers can perform sophisticated analysis and
optimization to produce excellent code
Modern processors have deep pipelining and multiple functional
units that can handle complex dependencies (beyond human
mind)
The most critical routines are probably memory manager and
CPU scheduler

Monitor system performance
Extra code must be added to compute and display measures of
system behavior
Log files and trace lists can be used for further analysis to
identify bottleneck and inefficiencies

Identify and replace bottleneck routines

March 08 OS: Operating-System Structures 29

OS Structures

OS is complex and large
Must be carefully engineered to function properly and
to be easily modified
Monolithic vs. modular design
Simple limited structures vs. well-defined structures to
interconnect various components

March 08 OS: Operating-System Structures 30

Simple Limited Structures

MS-DOS – written
to provide the most
functionality in the
least space

Not divided into
modules
Although MS-DOS
has some structure,
its interfaces and
levels of
functionality are not
well separated

March 08 OS: Operating-System Structures 31

Layered Approach

OS is divided into a number of
layers (levels), each built on top of
lower layers.
The bottom layer (layer 0), is the
hardware; the highest (layer N) is
the user interface.
With modularity, layers are selected
such that each uses functions
(operations) and services of only
lower-level layers
Benefits: Simplicity of construction,
debugging and upgrade
Detriments:

Careful planning is necessary in
defining layers
Tend to be less efficient

March 08 OS: Operating-System Structures 32

UNIX System Structure

UNIX – limited by hardware functionality, the original UNIX operating system
had limited structuring.
The UNIX OS consists of two separable parts: System Programs & Kernel

Kernel:
everything below the
system-call interface
and above the physical
hardware; provides file
system, CPU scheduling,
memory management,
and other operating-
system functions; a
large number of
functions for one level

March 08 OS: Operating-System Structures 33

Microkernel System Structure

Introduced by Carnegie Mellon University in Mach OS
Moves non-essential components from the kernel to “user” level
programs (which ones?)
Communication takes place between user modules using message
passing
Benefits:

Easier to extend a microkernel based OS
Easier to port the OS to new architectures
More reliable (less code is running in kernel mode; if a process fails, the
rest of the OS will not be touched)
More secure

Detriments:
Performance overhead of user space to kernel space communication

March 08 OS: Operating-System Structures 34

Modules

Most modern operating systems implement kernel
modules

Uses object-oriented approach
Each core component is separate
Each is loadable as needed within the kernel
Each talks to the others over known interfaces

Overall, similar to layers but with more flexible
Examples: modern implementations of Unix such as
Solaris, Linux, and Mac OS X

March 08 OS: Operating-System Structures 35

Example of Modular Kernel: Solaris Loadable Modules

Q. Discuss how it is similar and different from layered and
microkernel approaches.

March 08 OS: Operating-System Structures 36

Hybrid Structure: Mac OS X

Use microkernel (Mach) for memory management, remote procedure
calls (RPCs), Interprocess communication (IPC) facilities
BSD provides CLI, support for networking and file systems,
implementation of POSIX APIs
Kernel environment (extensions) provides I/O kit for development of
device drivers and dynamically loadable modules

March 08 OS: Operating-System Structures 37

Virtual Machines (VMs)

A virtual machine takes the layered approach to its
logical conclusion. It treats hardware and the operating
system kernel as though they were all hardware
A virtual machine provides an interface identical to the
underlying bare hardware
The operating system creates the illusion of multiple
processes, each executing on its own processor with its
own (virtual) memory

March 08 OS: Operating-System Structures 38

Virtual Machines (Cont.)

The resources of the physical computer are shared to
create the virtual machines

CPU scheduling and virtual memory can create the appearance
that users have their own processor
Spooling and a file system can provide virtual card readers and
virtual line printers
A normal user time-sharing terminal serves as the virtual
machine operator’s console

March 08 OS: Operating-System Structures 39

Virtual Machines (Cont.)

(a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

March 08 OS: Operating-System Structures 40

Virtual Machines (Cont.)

The virtual-machine concept provides complete protection of
system resources since each virtual machine is isolated from
all other virtual machines. This isolation, however, permits
no direct sharing of resources.
A virtual-machine system is a perfect vehicle for operating-
systems research and development. System development is
done on the virtual machine, instead of on a physical
machine and so does not disrupt normal system operation.
The virtual machine concept is difficult to implement due to
the effort required to provide an exact duplicate to the
underlying machine

March 08 OS: Operating-System Structures 41

VMware Architecture

March 08 OS: Operating-System Structures 42

The Java Virtual Machine (JVM)

JVM runs on the top of a host OS or embedded in web browser
Can be implemented as software (using interpreter or JIT compiler
similar to .NET framework) or hardware (Java chip)

JVM

March 08 OS: Operating-System Structures 43

Operating System Generation

Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site
SYSGEN program obtains information concerning the specific
configuration of the hardware system

What CPUs is there? What options are installed?
How much memory is available?
What devices are available?
What OS options are desired?

Implementation variations:
Completely tailored
Less tailored
Completely table driven

Criteria: generality, size and ease of modification as the hardware
change

March 08 OS: Operating-System Structures 44

System Boot

Operating system must be made available to hardware so
hardware can start it
Booting – starting a computer by loading the kernel

Bootstrap loader: a small piece of code locates the kernel, loads it
into memory, and starts its execution

Can also determine the state of the machine (diagnostic tests)

Sometimes use two-step process
Bootstrap starts code at a fixed location on the disk called boot block
Boot disk or system disk

When a CPU is powered up, the instruction register is loaded with a
predefined memory location (which has the initial bootstrap program)

Firmware used to hold initial boot code
Changing the bootstrap requires changing the ROM or using EPROM

March 08 OS: Operating-System Structures 45

End of Chapter 2

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and
G. Gagne. Addison Wesley, 2005

