
Constructing Optimal Educational Tests
Using GMDH-Based Item Ranking and Selection

Radwan E. Abdel-Aal1 and El-Sayed M. El-Alfy2

1Computer Engineering Department and 2Information and Computer Science Department 
College of Computer Sciences and Engineering 
King Fahd University of Petroleum and Minerals 

Dhahran 31261, Saudi Arabia 
{radwan, alfy}@kfupm.edu.sa

Address for corresponding author: 

Dr. Radwan E. Abdel-Aal 
P. O. Box 1759 
KFUPM
Dhahran 31261 
Saudi Arabia 

Email: radwan@kfupm.edu.sa
Phone: +(966) 3 860 4320 
Fax: +(966) 3 860 3059



Abstract

Item ranking and selection plays a key role in constructing concise and informative educational 

tests. Traditional techniques based on the item response theory (IRT) have been used to 

automate this task, but they require model parameters to be determined a priori of each item 

and their application becomes more tedious with larger item banks. Machine learning 

techniques can be used to build data-based models that relate the test result as output to the 

examinees’ responses to various test items as inputs. With this approach, test item selection 

can benefit from the vast amount of literature on feature selection in many areas of machine 

learning and artificial intelligence that are characterized by high data dimensionality. This paper 

describes a novel technique for item ranking and selection using abductive network pass/fail 

classifiers based on the group method of data handling (GMDH). Experiments were carried out 

on a dataset consisting of the response of 2000 examinees to 45 test items together with the 

examinee’s true ability level. The approach utilizes the ability of GMDH-based learning 

algorithms to automatically select optimum input features from a set of available inputs. 

Rankings obtained by iteratively applying this procedure are similar to those based on the 

average item information function at the pass-fail ability threshold, IIF ( =0), and the average 

information gain (IG). An optimum item subset derived from the GMDH-based ranking contains 

only one third of the test items and performs pass/fail classification with 91.2% accuracy on a 

500-case evaluation subset, compared to 86.8% for a randomly selected item subset of the 

same size and 92% for a subset of the 15 items having the largest values for IIF( =0). Item 

rankings obtained with the proposed approach compare favorably with those obtained using 

neural network modeling and popular filter type feature selection methods, and the proposed 

approach is much faster than wrapper methods employing genetic search.

Keywords: GMDH algorithm, Abductive networks, Neural networks, Machine learning, Optimal 

test design, Feature selection, Feature ranking, Educational measurements, Item response 

theory, Mutual information, Filter methods, Wrapper methods, Genetic algorithms. 
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1. Introduction 

Computers are increasingly used for automating the construction and analysis of educational 

tests [15, 23, 29, 31-33, 44]. The prime objective of an educational test is to locate examinees 

on the ability scale and classify them into mastery levels with adequate accuracy. This is 

usually achieved by observing examinees response to a set of items selected from a larger 

bank or pool. There has been a growing interest in optimizing the size of the test to include 

only the minimum number of items that satisfy the test objective, with useful time savings for 

both examiners and examinees and economizing on physical resources such as paper. 

Moreover, the resulting data reduction provides greater insight into the educational processes 

involved, offers more meaningful and parsimonious summary of the data, and simplifies 

subsequent data analysis. Several methods have been proposed for automating test 

construction. Based on the item response theory (IRT) [20, 23, 29-33, 44, 45], the examinee’s 

ability is described by a single latent variable, and each test item is described by the Fisher’s 

information function. The item information function (IIF) indicates the measurement precision 

for a test item at various ability levels, and therefore a test can be formed by selecting items 

based on their information functions. Lord [30] described an item selection procedure which 

ensures that the information function of the constructed test (sum of the information functions 

for constituent items) approximates a specified target information function. Although 

conceptually simple, the process becomes intractable as the item bank grows in size. 

Mathematical programming provides more systematic approaches for optimal test design, 

where the process is modeled as an optimization problem to maximize (or minimize) some 

objective function subject to constraints imposed by given test specifications [20,30,45]. 

However, implementations are often hindered by the requirement to estimate item 

characteristics a priori. Moreover, the search for optimal solutions becomes computationally 

intensive with larger item banks. Heuristic approaches have been proposed to facilitate finding 
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adequate solutions in a reasonable computation time, e.g. using Tabu search [23] and 

simulated annealing [24].

Machine learning techniques can be used to build data-based models that relate the test 

result, as an output, to the examinees response to the various test items, as inputs. Sun and 

Chen [43] used neural networks for constructing educational tests, where the test information 

function is transformed into an energy function which is minimized through training the 

network.  In this way, test item selection could benefit from the vast amount of work carried out 

on feature selection and ranking in areas of machine learning which are characterized by high 

data dimensionality, as manifested by the low ratio between the number of training examples 

and the number of available input features. Examples of such areas include remote sensing 

[48], seismic data processing [22], speech recognition [6], drug design [37], and 

characterization of EEG data [49]. The resulting reduction in the number of input features 

should alleviate the problem of poor model performance with high data dimensionality. Other 

practical advantages include reducing the number of measurements required, shortening 

training and execution times, and improving model compactness, transparency and 

interpretability. Discarding redundant features also reduces noise and spurious correlations 

with the output, and avoids problems caused by colinearity between inputs.

Feature subset selection techniques can be classified into three main categories: embedded, 

filter (open-loop), and wrapper (closed-loop) techniques [13]. With embedded techniques, 

feature selection is performed as part of the induction learning itself, e.g. with decision tree 

algorithms [18]. Both filter and wrapper techniques perform feature selection as a 

preprocessing step prior to the modeling application. Filter techniques do not use the learning 

mechanism for feature selection. They filter out undesirable and redundant features through 

checking data consistency and eliminating features whose information content is represented 

by others. Examples of filter techniques include Relief [37] and correlation-based feature 
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selection (CFS) [19]. Information theoretic measures, such as the mutual information criterion, 

were used for feature selection [12]. The Bhattacharyya probabilistic distance and other 

statistical measures were used to select feature subsets that maximize class separability [26]. 

Since filter methods do not use the learning algorithm, they are fast and therefore suitable for 

use with large databases. Also, resulting feature selections are applicable to various learning 

techniques. Wrapper techniques [27] search for an optimal feature subset by testing the 

performance of candidate subsets using the learning algorithm, and are therefore slower than 

filter methods. Wrapper feature selections are unique to the learning algorithm used; and the 

process should be repeated for a different learning algorithm. Strategies used for searching the 

feature space include sequential feature selection (SFS) methods [8]. Genetic algorithm (GA) 

search methods have been used with both filters and wrappers [14, 35]. 

Another approach to feature selection relies on ranking all features based on a given quality 

criterion and then selecting a given number of the top features. An optimum feature subset can 

also be derived from the ranking list. While investigating key scientific misconceptions found 

with students of introductory astronomy courses, Sadler [41] developed shortened tests by 

ranking items based on P-values representing their difficulty and D-values representing their 

discriminatory power. He also used a stepwise regression approach to determine a small 

subset of questions that accounts for the largest amount of variance in student grades. It was 

found that only 6 out of the 47 test items used explained 70% of the variance in the final grade. 

In a study by Johnstone et al., item rankings based on difficulty were compared for tests 

performed on different groups of students to identify test items that function differentially for 

students with disabilities in comparison to those without disability, and therefore present 

potential problems to the former group [25].  

This paper describes a novel technique for test item ranking and selection using abductive 

network classifiers based on the group method of data handling (GMDH) self-organizing 
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machine learning paradigm [17,34]. Abductive machine learning builds a model in the form of a 

network of polynomial functional elements (nodes) which is self-organized in layers to 

represent complex relationships between dependent (output) and independent (input) 

variables. Unlike most other approaches based on regression and neural networks, the 

technique automatically synthesizes optimal networks without requiring the user to specify the 

form for the model relationship or the network architecture in advance. Compared to neural 

networks, abductive network models are easier to use, can be faster, require fewer training 

parameters [7] and yet can be more accurate [34]. The method selects only relevant model 

inputs and synthesizes more transparent models that provide greater insight and give better 

explanation of the modeled phenomena. The latter advantage is particularly important in 

disciplines such as education, medicine, and the environment. Abductive networks have been 

used for modeling the educational score in school health surveys [5] and for weather prediction 

[4], financial modeling [7], electric load forecasting [2], and processing nuclear spectra [1]. 

The proposed method for item ranking iteratively utilizes the property that abductive learning 

algorithms automatically select subsets of optimum predictors [38] at given levels of model 

complexity specified by the user. Information gathered in this way is used to rank the available 

items according to their predictive quality. Such ranking highlights test items that are most 

effective in explaining the test score, which should be of interest to educational practitioners. 

An optimum feature subset can also be derived by starting with the best feature at the top of 

the list and progressively adding more features while evaluating the resulting classifier on an 

out-of-sample dataset at each step. This procedure is repeated until the error rate on the 

external evaluation set starts to rise due to overfitting. This paper applies this technique to 

educational testing using a dataset consisting of the responses and scores of 2000 examinees 

for a 45-item test [40].  
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The rest of the paper is organized as follows: Section 2 gives a brief introduction to the GMDH 

algorithm and the abductive network modeling technique adopted for item ranking. It also 

reviews other existing approaches for item ranking based on IRT and mutual information which 

are used later in the paper for comparison purposes. Section 3 describes the dataset used. 

Section 4 presents results of abductive network modeling of the pass/fail test outcome and the 

item ranking experiments performed. Section 5 compares the performance of the proposed 

approach with that of popular feature ranking and selection methods commonly used in 

machine learning and data mining. Section 6 describes how optimum item subsets were 

derived to construct more concise tests, and compares their classification performance with 

that of other subsets selected using IRT and mutual information concepts. Conclusions and 

suggestions for future work are given in Section 7. 

2.  Methods 

2.1  GMDH and AIM Abductive Networks

AIM (abductory inductive mechanism) [9] is a GMDH-based supervised machine-learning tool 

for automatically synthesizing abductive network models from a database of solved examples. 

Automation of model synthesis lessens the burden on the analyst and safeguards the model 

generated against influence by human biases and misjudgments. The GMDH approach is a 

formalized paradigm for iterated (multi-phase) polynomial regression capable of producing a 

high-degree polynomial model in effective predictors. The process is 'evolutionary' in nature, 

using initially simple (myopic) regression relationships to derive more accurate representations 

in the next iteration. To prevent exponential growth and limit model complexity, the algorithm 

selects only relationships having good predicting powers within each phase. Iteration is 

stopped when the new generation regression equations start to have poorer prediction 

performance than those of the previous generation, at which point the model starts to become 

overspecialized and therefore unlikely to perform well with new data. The algorithm has three 



main elements (representation, selection, and stopping) and applies abduction heuristics for 

making decisions concerning some or all of these three aspects. A good review of the classical 

GMDH approach can be found in [17]. A number of GMDH methods operate on the whole

training dataset thus eliminating the need for a dedicated selection set. As an example of the 

adaptive learning network (ALN) approach, AIM uses the predicted squared error (PSE)

criterion [11] for selection and stopping to avoid model overfitting. The criterion minimizes the 

expected squared error that would be obtained when the network is used for predicting new 

data. AIM expresses the PSE as [11]:

2
)2( pNKCPMFSEPSE                                                                                                (1) 

where FSE is the fitting squared error on the training data, CPM is a complexity penalty 

multiplier selected by the user, K is the number of model coefficients, N is the number of 

samples in the training set, and  is a prior estimate for the variance of the error obtained 

with the unknown model, usually taken as half the variance of the dependent variable. PSE

goes through a minimum at the optimum model size that strikes a balance between accuracy

and simplicity (exactness and generality). The user may optionally control this trade-off using 

the CPM parameter. Larger values than the default value of 1 lead to simpler models that are 

less accurate but may generalize well with new data, while lower values produce more 

complex networks that may overfit the training data, thus degrading actual prediction

performance.

2

p

AIM builds networks consisting of various types of polynomial functional elements. The 

network size, element types, connectivity, and coefficients for the optimum model are

automatically determined using well-proven optimization criteria, thus reducing the need for 

user intervention compared to neural networks. This simplifies model development and 

considerably reduces the learning/development time and effort. The models take the form of 

layered feed-forward abductive networks of functional elements (nodes) [9], see Fig. 1. 

8
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Elements in the first layer operate on various combinations of the independent input variables 

(x's) and the element in the final layer produces the predicted output for the dependent variable 

y. An input layer of normalizes convert the input variables into an internal representation as Z

scores with zero mean and unity variance, and an output unitizer unit restores the results to the 

original problem space. AIM supports the following main functional elements: 

(i) A linear element which consists of a constant plus the linear weighted sum of all outputs of 

the previous layer, i.e. 

"Linear"  Output  = w0 + w1x1 + w2x2 + w3x3 + .... + wnx n (2)

where x
1
, x

2
,..., x

n
are the element inputs and w

0
, w

1
, ..., w

n
 are the element weights.  

(ii) Single, doublet, and triplet elements which implement a third-degree polynomial expression 

for one, two, and three inputs respectively; for example,  

"Double"  Output = w0 + w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2 + w6x1
3 + w7x2

3 (3)

2.2  GMDH-Based Feature Ranking and Selection 

This paper describes a novel approach for ranking the input features of a training set according 

to their predictive quality by repeatedly forcing the GMDH-based AIM learning algorithm to 

automatically select a few optimum predictors at reduced model complexity settings. Selected 

features are successively removed from the dataset and the process is repeated for the 

selection of a new group. In this way, features are ranked in groups having different values of 

predictive quality, with those selected earlier being of higher quality. Depending on the problem 

being modeled, it may be possible to further rank the features within each group by 

constructing models using only such variables and repeating the selection process at greater 

simplicity settings. With the used version of AIM, the CPM parameter that controls model 

complexity has a maximum value of 10, which may preclude the synthesis of models that are 

simple enough to allow such ranking within each group for some problems.
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With all input features available for use by the model, we start by using a large CPM value to 

synthesize a simple model consisting of a single functional element using a group of up to 

three input features that are automatically selected by the learning algorithm. When modeling 

complex input-output relationships, this may also require specifying lower limits on the number 

of layers in the model and the number of variables in the first layer prior to training. Features 

selected in the first step would be those having the best predictive quality among the feature 

set. Inputs in the dataset corresponding to the selected features are then disabled to prevent 

their selection in subsequent modeling steps. The process is then repeated for the selection of 

the next group of input features that will have a lower predictive power compared to the earlier 

group, until all features have been selected. If required and deemed feasible, this process can 

be followed by further ranking within each of the groups selected to achieve a complete 

ranking of all individual features.

Two approaches can be adopted for selecting a feature subset from the ranking list obtained 

above. In the first approach, a compact m-feature subset can be obtained by taking the first m

features starting at the top of the ranking list. In the second approach, the optimum subset of 

features is determined by repeatedly forming subsets of k features, k = 1, 2, 3, …, n, where n

is the total number of available features, starting at the top of the ranking list. A classifier is 

trained on each of the formed subsets. As k increases, classification error rate for the resulting 

models on the training set is expected to monotonically decrease as the models fit the training 

data more accurately. However, performance on an out-of-sample evaluation dataset would 

first improve and then starts to deteriorate due to the model overfitting the training data. The 

optimum model corresponding to the optimum feature subset would correspond to the smallest 

value for k where the minimum classification error rate on the evaluation set is reached.



2.3 IRT-Based Item Ranking

Since the inception of the theory in the late 1960s, the item response theory (IRT) has been 

the prevalent test modeling methodology for representing examinee’s behavior on a test in 

terms of the characteristics of test items and examinee’s ability [20,23,30,45]. Within the 

framework of traditional IRT, the examinee’s proficiency level is typically modeled by a single

latent trait, , and each item is characterized by up to three parameters, namely discrimination 

parameter a, difficulty parameter b, and pseudo-guessing parameter c. The theoretical values

of item parameters are a  (0, ), b  (- , ) and c  (0, 1) but practically a  (0, 0.28), b  (-

3, 3) and c  (0, 0.35). Following the three-parameter logistic model (3PL), the probability that 

a test taker with ability  correctly answers item i having parameters (ai, bi, ci) is given by [30]: 

))(7.1exp(1

1
)|1Pr()(

ii

i
iii

ba

c
czP ,        (4) 

where zi is the examinee’s response for item i. The above function is also known as the item 

response function (IRF). To select the most informative subset of items for a particular test,

items in the item pool can be ranked based on their individual parameters, such as difficulty 

levels, discrimination power or guessing levels. However, this approach considers only one 

aspect of the item characteristics and does not take into account the proficiency levels of the 

test takers when selecting items. Alternatively, items can be ranked based on a measure 

known as Fisher’s item information function that describes the information revealed by an item

as a function of the examinee’s ability. For dichotomously scored items, the item information 

function (IIF) for item i at the ability estimate is defined asˆ

ˆ)()(

))((
)ˆ(

ii

i
i

QP

P
I                    (5) 

where Qi( ) = 1 - Pi( ). The IIF provides test developers with a method for ranking items 

according to the examinee’s ability level. The effectiveness of a group of m items can be 

11



expressed as the sum of the information functions of all the items (also known as the test 

information function, TIF), i.e.

m

i

iII
1

)ˆ()ˆ(                                                                                (6) 

Groups having different numbers of items can be compared using the average TIF per item.

m

i

iavg I
m

I
1

)ˆ(
1

)ˆ(        (7) 

Using this ranking measure, item selection can be tailored to match the purpose of the test. 

Lord [30] outlined a test assembly procedure for selecting items such that the information 

function of the constructed test approximates a target information function to a satisfactory

degree. The closer the matching between the target information function and the constructed

test information function, the more precise the test is in measuring ability.

2.4 Mutual Information-Based Item Ranking 

Test items can also be ranked based on information theory criteria [16]. Mutual information is a 

commonly used measure that quantifies the degree of dependence (or information sharing) 

between two variables. Mutual information has been used widely in many machine learning 

applications, including pattern recognition and data mining. Recently, it has been used to 

evaluate the effectiveness of using a test item in assessing examinee’s competence level [29, 

39]. Three equivalent methods have been reported in the literature for computing the mutual

information [16]. In the context of educational testing, let Y and X be the domains of tested 

ability and item response respectively. Also let Y and X be discrete random variables denoting 

the learner’s ability and an item response with realizations y Y and x X respectively. Thus, 

the expected information gained about Y by observing X can be measured by the mutual 

information between X and Y as defined by:

y x yPxP

yxP
yxPYXIG

)()(

),(
log),();( 2 , (8)
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where P(x, y) is the joint probability mass function of X and Y and P(x) and P(y) are their 

marginal probability mass functions respectively.

Another equivalent method for computing the mutual information can be expressed in terms of

Shannon’s entropy, a central concept in information theory, defined as [42]: 

)|()();( XYHYHYXIG ,                 (9) 

where H(Y) is the Shannon entropy of Y and H(Y|X) is the conditional entropy of Y given X. As 

indicated by Shannon, entropy can be viewed as a measure of the degree of uncertainty. 

Hence, mutual information can be interpreted as the amount of uncertainty reduction about Y

by observing the item response X (or the degree of relevance of using X in measuring Y).

The third method computes mutual information in terms of the Kullback-Leibler (KL) distance, 

also known as relative entropy, as [28]: 

))()(),,(();( xPyPxyPDXYIG KL . (10)

This distance quantifies the divergence between two probability distributions P(z) and Q(z) as 

defined by: 

z

KL
zQ

zP
zPzQzPD

)(

)(
log)())(),(( 2 . (11)

Similarly if X = (X1, X2, …, Xm) denotes a random vector representing an item response pattern 

to a set of m items, known as a testlet, with a realization vector x = (x1, x2, …, xm), the 

information gained about Y can be defined using any of the previously mentioned methods. 

For example, using equation (8) the information gain (IG) is defined as: 

y yPP

yP
yPYIG

x x

x
xX

)()(

),(
log),();( 2 . (12)

Knowing the prior probability distribution {P(y)} and the conditional probability for each item 

{P(x| y)} and assuming that item responses are conditionally independent given the learner’s

ability, the joint probability mass function P(x) can be expressed as:

13
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3. The Dataset 

To evaluate the performance of the proposed approach, we used a dataset from [40] which

consists of a sample of 2000 cases for a 45-item test. It is assumed that examinees are 

classified based on a single-ability parameter, , and therefore each case in the dataset gives

the response vector and the true ability level for an individual test taker. The test items are 

numbered as 1, 2, 3, …, 45 according to the column they occupy in the dataset. The column 

number is used as the item identification number (IID) throughout this paper. Test items are 

dichotomously scored, i.e. when the test is taken, the examinee’s response to each item is

encoded as +1 (i.e. correct) or -1 (i.e. incorrect). It is also assumed that the examinees can 

skip test items, in which case they are assigned 0. For the 2000 cases, ability values,  varied

over the range -4.1456 to +4.0583. For the purpose of experiments reported in this paper, the 

total sample population is symmetrically divided about the  = 0 axis into two categories (fail 

and pass). Estimation of item parameters and individual abilities was performed using Newton-

Raphson maximum likelihood estimation as outlined in Lord [30]. Table 1 shows the estimated

item parameters for each of the 45 test items. The table also lists the ascendant sorting of the 

test items based on their individual item parameters and on the item’s IIF at the ability level  = 

0, which is the cut-off level between the fail and pass categories. All experiments reported in 

this paper were performed on a Pentium 4 PC running Microsoft Windows XP Professional

with Service Pack 2.

4. Abductive Item Ranking and Selection for Pass/Fail Classification 

This paper is concerned with the binary classification of examinees’ ability as a function of

relevant inputs among the 45 test items of the dataset described in Section 3. Ability values

14
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over the range {-4.1456 to +0.0055} were assigned an output level 0 (fail category) while 

values over the range {+0.0075 to +4.0583} were assigned an output level 1 (pass category), 

with each category comprising 1000 case. Each of the two pass and fail categories was 

randomly split into 750 cases for training and 250 cases for evaluation, thus providing a 

training set of 1500 case and an evaluation set of 500 cases for the overall population. Ability 

values predicted by the abductive network models constructed through training on the training 

set were converted to a binary ability level through simple rounding at a threshold of 0.5. 

Approximate ranking of the 45 test items comprising the dataset was carried out through model 

training in 12 steps using the procedure described in section 2.2. All steps were performed at 

the same model complexity settings of CPM = 10 (maximum value permitted with the AIM 

version used), maximum number of model layers = 1, size of first layer = 3. Initially, all input 

features were enabled for selection as inputs for the synthesized model by the abductive 

learning algorithm. Following modeling step i; i = 1, 2, …, 12, inputs selected for the model 

synthesized during that step were disabled to prevent their use as model inputs in all 

succeeding steps: i+1, i+2, …, 11, 12. This forces selection from lower quality inputs and 

allows partial ranking of the overall feature space in the form of the small groups of items which 

are sequentially selected. Inputs selected at lower values of i are expected to have superior 

predictive quality. Results of the 12 modeling steps are shown in Table 2. In addition to the 

inputs excluded from being selected at each step, the table shows the structure of the 

abductive model synthesized and a summary of its performance on the evaluation set. 

Performance is measured in terms of the mean absolute error (MAE) between the actual and 

predicted values for the binary ability output as well as the percentage classification error. The 

variable number indicated at a model input, e.g. Var_i, corresponds to the IID of the test item 

selected as model input, while Var_46 is the model output. In all steps except 11 and 12, a 3-

input triplet model was synthesized. Towards later steps, input features available for selection 

become progressively poorer in predictive quality, thus driving the training algorithm to select a 
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larger subset of inputs to ensure adequate prediction performance by the synthesized model. 

With the AIM software used, this requirement could override the limit of 3 specified for the size 

of the first layer in the model. The model generated at step 11 is a linear functional element 

with 11 inputs and that at step 12 uses all remaining 4 inputs. In spite of the larger number of 

inputs, the complexity of model 11 is comparable to that of other models, for example the 

number of coefficients for its linear element is 11 as compared to 14 for the triplet element of 

model 10. Due to the gradual degradation in the predictive quality of selected model inputs, 

there is a general trend of increasing MAE and classification errors at later steps, with the latter 

more than doubling from 15.2% at step 1 to 35.6% at step 12. Training time is fast, with none 

of the 12 models in Table 2 taking longer than 4 seconds to train.

Table 3 lists the composition of the 12 groups of test items selected as model inputs in the 

sequence of 12 modeling steps of Table 2, with group number i consisting of the subset of 

inputs for the model synthesized at step i. Based on the assumption that higher quality 

predictors are selected at earlier steps, the GMDH-based ranking of the groups is identical to 

the group number, with group 1 {Items 3, 23, 45} having the highest predictive quality and 

group 12 {Items 8,12, 33, 38} having the lowest quality. This suggests the following partial 

ranking list for the 45 test items: {3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27, 11, 17, 43, 7, 24, 

34, 18, 19, 44, 2, 35, 37, 5, 20, 42, 10, 15, 29, 1, 4, 9, 13, 16, 21, 22, 28, 30, 32, 39, 8, 12, 33, 

38}, where items within a group are listed in the order they appeared in the model structures 

shown in Table 2. Table 3 lists also the ranking of the 12 groups of items based on the average 

IIF at  = 0 per item in the group as discussed in Section 2.3. The third ranking shown in the 

table is that based on the average information gain (IG) described in Section 2.4. In order to 

compare the GMDH-based ranking with each of the other two rankings we used the symmetric 

Spearman’s footrule ranking similarity criterion [36]. Let {Q1, Q2, …, Qn} and {R1, R2, …, Rn} be 



the vectors representing the two n-element rankings to be compared. The symmetric version of 

the Spearman’s footrule is given by: 

])1([
1

1

n

i iiii

n

n RQnRQ
M

C (14)

where Mn = n2/2 if n is even or (n2-1)/2 if n is odd. The value obtained for ranges from -1, for 

two exactly reversed rankings, to +1, for two identical rankings. Results in Table 3 shows that

the GMDH-based ranking is reasonably close to the rankings based on the IIF and the IG

criteria, with values being 0.861 and 0.944, respectively.

nC

nC

To determine the optimum subset of test items from the GMDH-based ranking results

described above, we developed 12 new abductive models trained on subsets of inputs of a 

gradually increasing number of the groups selected in the 12 modeling steps described above. 

The inputs enabled during the synthesis of model j; j = 1, 2, …, 12 include group j and all

preceding groups 1, 2, …, j-1. This arrangement produces 12 models trained on increasingly

larger subsets of test items starting always at the top of the partial ranking list and stopping at 

group boundaries. For example, model 1 was trained on an input subset consisting of group 1,

i.e. {3, 23, 45}, model 2 on a subset consisting of groups 1 and 2, i.e. {3, 23, 45, 14, 31, 41}, 

etc. Model 12 was trained on the full set of 45 inputs. The default training settings of CPM = 1, 

maximum number of model layers = 4, size of first layer = 15 were used for all these models, 

and each model was evaluated on both the training set and the evaluation set. For each of the 

12 models, Table 4 shows the model structures synthesized, lists the input features available 

but not selected during model synthesis, and gives the classification error on both the training 

and evaluation sets. Fig. 2 plots the MAE errors and the classification errors on both datasets.

As more input features are initially brought in, prediction errors on both the training and 

evaluation set decrease as indicated in Fig. 2 and Table 4. Further increase in the number of 

input features is expected to continue a monotonic reduction in the errors on the training set as 

17
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the model fits the training data more accurately. However, error rates on the out-of-sample 

evaluation set are expected to reach a minimum before they start to rise again as further 

increase in the number of input features causes the model to overfit the training data, thus 

reducing its ability to generalizes well with the new data of the evaluation set. The subset of 

input features corresponding to this minimum is considered the optimum feature subset. 

Referring to Fig. 2(a), the MAE error on the evaluation set bottoms at model 5, suggesting an 

optimum feature subset that consists of groups 1, 2, 3, 4, and 5 in Table 3, for a total of 15 test 

items {3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27, 11, 17, 43}. Table 4 indicates that all input 

features provided for training models 1, 2, 3, 4, and 5 are selected as model inputs during 

training, with none of the features discarded, which indicates the good predictive quality of the 

five groups comprising the optimum subset. Beyond model 5, additional input features down 

the ranking list which have poorer predictive quality become available for selection, and 

therefore an increasing number of such features is discarded. For example, model 6 uses only 

13 out of the 18 inputs available. Models 8 and 9 are identical, which indicates that the three 

inputs comprising group 9 are completely discarded. Similarly, groups 11 and 12 (a total of 15 

inputs) are totally discarded, leading to models 10, 11, and 12 being identical. Ignoring such 

poorer quality inputs leads to synthesizing simpler models that may not overfit the training 

data. This explains why the MAE and classification errors do not monotonically decrease on 

the training set and do not monotonically increase on the evaluation set beyond model 5, see 

Fig. 2.

5. Comparison with Other Feature Ranking Methods and Neural Network Classifiers 

We have compared the GMDH-based item ranking described above with results obtained 

using a number of popular feature ranking/selection methods used in data mining and machine 

learning and with results from neural network modeling. The feature ranking/selection methods 

included three filter techniques, namely information gain, information gain ratio, and chi-
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squared, as well as a wrapper method that uses a neural network classifier with a genetic 

search approach [47]. The neural network modeling method used probabilistic neural networks 

(PNN) trained with a genetic learning algorithm using the NeuroShell Classifier software [46]. 

Compared to conventional neural networks, such networks take longer time to train but have 

the advantage of generalizing well on external data [46]. The NeuroShell Classifier software 

provides an estimate of the relative importance of each input feature used to train the model, 

which can be compared with the GMDH-based ranking. Prior to training, the maximum number 

of generations allowed without performance improvement by the genetic algorithm was set to 

20, and the goal of the genetic optimization during training was set to minimize the total 

number of incorrect classifications in the two classification categories. Training was stopped 

automatically after 34 generations and took 85 minutes. Overall classification accuracy 

achieved was 90.5% and 89.2% on the training set and evaluation set, respectively. The bar 

chart in Fig. 3 depicts the importance of input attributes at the end of training and forms the 

basis for item ranking with this method. The wrapper method with a neural network classifier 

and genetic search [47] proved very slow, with training lasting for 67 hours, and achieved a 

classification accuracy of 91.2%.

Table 5 lists ranking results for the 45 test items according to: (i) the GMDH-based partial 

ranking, (ii) the information gain method, (iii) the information gain ratio method, (iv) the chi-

squared method, (v) the wrapper method, and (vi) the NeuroShell neural network classifier with 

genetic training. Method (vi) selects an optimum subset of 28 input features without ranking 

them. As a rough comparison between the GMDH-based ranking and the other methods, 

Table 5 gives the percentage overlap between the optimum 15-item subset forming the top 

third of the GMDH-based ranking list and the top 15 items of each of the other ranking lists. 

The percentage overlap ranges from 46.7% with the NeuroShell classifier to 93.3% with the 

chi-squared method. 14 out of the 15 items forming the optimum GMDH-based subset are 

included in the 28 items selected by the wrapper method. Poor overlap with the NeuroShell 
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classifier can be attributed to the fact that the NeuroShell ranking is reliable only for a small 

number of input features [46]. The GMDH-based ranking approach proposed does not suffer 

from this limitation.

6. Optimum Item Subsets and Comparisons 

We obtained the optimum abductive model synthesized using the optimum subset of test items 

selected by the GMDH-based ranking described in Section 4. This was achieved by developing 

models over a range of values for the CPM parameter with all remaining training parameters 

kept at their default values. Synthesized model structures, shown in Table 6, indicate that a 

decade of variations in CPM (from 0.5 to 5) introduces no changes in the input features 

selected as model inputs, with no input features being discarded by simpler models (larger 

CPM values). The difficulty in dispensing with any of the input features at such model simplicity 

levels is an indication of the good predictive quality of the selected optimum subset. Further 

model simplification with CPM = 10 causes only one input item, item 11, to be discarded. 

Referring to Table 3, it is interesting to note that item 11 belongs to group 5 which has the 

poorest predictive quality among the five groups of test items comprising the optimum subset. 

Table 6 lists the percentage classification errors on both the training and evaluation sets. 

Results show that the optimum model at CPM = 5 gives the minimum error of 8.8% on the 

evaluation set. The 3-layer model uses the full optimum subset and consists of only 3 simple 

functional elements comprising a linear, a singlet, and a doublet. Classification of the 

evaluation set using this optimum model gives an overall classification accuracy of 91.2%, a

sensitivity of 93.7%, a specificity of 88.6%, a positive predictive value of 89.5%, and a negative 

predictive value of 93.2%.

We examined the adequacy of the optimum input subset selection described above in 

comparison with several other subsets selected using other criteria based on abductive, IRT, 

and random approaches. Comparisons were based on the classification performance of 
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optimum abductive network models developed using the respective subsets. The optimum 

model for each of the other subsets was taken as that giving the best performance on the 

evaluation set among three models trained at CPM = 0.5, 1, and 2. Table 7 shows the results 

for comparing the optimum GMDH-based subset, identified as subset S1, with two other 

subsets (S2 and S3) based on abductive selection, a randomly selected subset S4 and three 

subsets (S5, S6, and S7) based on three different IRT-based selection criteria. Each of the 

subsets S4, S5, S6, and S7 has the same size of 15 items as the optimum GMDH-based subset. 

Subset S2 is the complement of subset S1, i.e. it consists of the remaining 30 test items not 

included in subset S1. Subset S3 is that selected by the optimum abductive model trained on 

the full set of 45 test items. Referring to Table 1, the three IRT-based selection criteria used 

are: largest item discriminatory power (i.e. items in the bottom third of the ascendant sorting 

column for the parameter a), intermediate values for item difficulty (items in the middle third of 

the ranking column for the parameter b), and largest values for the IIF item information function 

at the pass/fail ability cut-off (items in the bottom third of the ascendant ranking column for IIF 

at  = 0). Referring to Table 7, the 12 items comprising subset S3 are those selected by the 

abductive model from the full set of test inputs. For the optimum GMDH-based subset S1, the 

list of subset items given in the Table are those items available for training and also actually 

selected by the model. For all other subsets in the table, the list of items given represents the 

inputs used for training and may not be all selected by the synthesized optimum abductive 

model used for the comparison. Table 7 shows the percentage overlap between each subset 

and the optimum subset as well as the CPM parameter used and the classification 

performance on the evaluation set for the corresponding abductive model. Results indicate that 

the optimum subset outperforms all other subsets considered except subset S7 selected 

according to the IRT IIF function. However, the abductive selection method has the 

advantages that it does not require knowledge of the three-parameter model for the test items 

or the calculation of the information function for each item. All subsets except S2 have 
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approximately the same size, and results for those subsets suggest significant negative 

correlation between the percentage overlap with the optimum set and the percentage 

classification error.

The performance comparison described above was carried out at a single cut-off point (0.5) 

marking the pass/fail transition in the test outcome as represented by the binary value of the 

estimated ability. A more useful comparison would involve several such cut-off points over the 

range 0 to 1 using the receiver operating characteristics (ROC) analysis [21]. The ROC curve 

is a plot of the sensitivity (true positive rate) versus the false positive rate (= 1 – specificity) for 

various values of the threshold used to sort a continuous classifier output into normal or 

abnormal classes. The area under the curve (AUC) is a useful measure for determining the 

quality of classification schemes and diagnostic tests, and statistically comparing their 

performance. This parameter is ideally 1.0 for an ideal classifier which has an ROC curve that 

passes through the point (0,1), thus giving 100% sensitivity at 100% specificity. Practically 

useful classifiers would have AUC values in the range (0.5 < AUC  1.0).  ROC analysis was 

used to compare the performance of three models having the same size of 15 test items. 

These models correspond to the optimum subset S1 based on GMDH ranking, subset S4

based on random selection, and subset S7 based on IRT-IIF ranking. We used the Analyse-it 

statistical software package [10] which employs the Hanley and McNeil method [21] for 

performing the ROC analysis. Fig. 4 plots the three ROC curves and gives values of the AUC 

parameter and its standard error (SE) for each model. Results indicate that both the GMDH-

based and IRT-IIF based subsets are of practically identical classification quality, with AUC 

0.975. Both subsets are superior to the randomly selected subset which has an AUC of 0.949. 

Analysis results indicate that the difference between the AUC values is statically significant at 

the 95% confidence level in both cases.
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7.  Conclusions 

We have demonstrated the use abductive machine learning for the partial ranking of test items 

according to their ability to predict pass-fail test outcomes. The procedure relies on the ability 

of GMDH-based learning algorithms to automatically select optimum input features, and 

involves iteratively forcing the synthesis of a simple model and excluding the inputs selected at 

each stage. Ranking of 12 subsets of items obtained in this way compares favorably with 

rankings for the same subsets based on the average item information function at the pass-fail 

ability threshold, IIF ( =0), and the average information gain (IG). The partial ranking obtained 

was used to determine an optimum subset that contained only of one third of the available test 

items, yet achieved a pass/fail classification accuracy of 91.2%. This accuracy is exceeded 

only by a model that uses a subset of the same size but consists of test items having the 

largest values for the IIF at = 0 (92%). Both subsets achieved approximately the same area 

of 0.975 under the ROC curve. In both cases, the AUC is significantly greater than that of a 

subset of the same size that consists of randomly selected test items. Compared to IIF based 

ranking, the proposed GMDH-based approach should be easier to derive, as it does not make 

any assumptions on the form of the item-competence model (e.g. 3PL) nor does it require the 

calculation of any parameters for the test items or their IIF functions. Therefore, the proposed 

approach should prove attractive for practitioners who are less interested in (and less 

experienced with) the tools, as compared to the actual educational application. The proposed 

method is self-contained, whereas IRT based methods may require mastering several tools 

and utilities. Item selections and rankings are comparable with those obtained using popular 

filter-type feature ranking methods. However, the proposed approach has the added 

advantage that feature selection is automatically associated with the synthesis of classification 

models that provide evidence of the quality of the resulting feature selection and ranking. The 

proposed approach has a clear advantage over wrapper feature selection methods that use 

genetic search, as it achieves comparable classification performance much faster. Overall, 
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results indicate that abductive machine learning can provide a useful non-parametric approach 

for constructing optimal shortened tests that are more economical to administer and allow 

better insight into the test results. Future work would consider methods for finer ranking within 

item groups to achieve complete ranking of the item set, and the use of such ranking to 

develop ensembles of tests which can be combined to explain the test outcome more 

accurately.
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Table 1. Actual a, b, and c parameters for each of the 45 test items and the ascendant sorting of the test

items according to the parameter value and to the value of the item information function (IIF) at the

ability level = 0 which is the cut-off level between the fail and pass categories of examinees (a:

discrimination parameter, b: difficulty parameter, and c: pseudo-guessing parameter).

Item Parameters Items Ranked in Ascendant Order by the Value of: 
IID

a b c a b c IIF at = 0 

1 0.967 0.826 0.201 16 9 32 38

2 1.148 -0.51 0.169 13 29 12 8

3 1.494 -0.336 0.217 4 39 8 16

4 0.894 0.05 0.205 1 13 29 13

5 1.039 -0.843 0.221 21 5 11 21

6 1.272 -0.123 0.219 8 18 21 33

7 1.149 0.025 0.208 5 35 24 12

8 1.023 2.124 0.145 42 34 43 32

9 1.366 -1.342 0.195 40 11 17 1

10 1.079 0.17 0.296 10 43 14 30

11 1.326 -0.657 0.154 22 42 2 22

12 1.372 1.346 0.143 2 36 36 4

13 0.707 -1.199 0.207 17 2 44 10

14 1.232 -0.008 0.164 7 40 18 28

15 1.204 0.618 0.214 37 17 41 5

16 0.688 0.043 0.228 36 23 45 15

17 1.148 -0.497 0.162 35 3 35 9

18 1.281 -0.811 0.176 15 31 40 42

19 1.633 0.531 0.233 14 37 22 40

20 1.354 0.665 0.194 6 27 20 39

21 0.978 1.231 0.156 30 6 30 20

22 1.142 1.015 0.193 28 14 9 29

23 1.592 -0.476 0.224 18 7 28 7

24 1.671 0.643 0.158 44 16 33 35

25 1.504 0.226 0.266 27 4 1 37

26 1.334 0.063 0.22 43 26 4 2

27 1.289 -0.208 0.224 11 45 13 17

28 1.28 0.868 0.198 26 10 42 36

29 1.435 -1.252 0.151 20 25 7 18

30 1.272 1.084 0.194 34 41 31 34

31 1.683 -0.301 0.211 9 44 15 44

32 1.453 1.428 0.091 12 19 3 6

33 1.471 1.219 0.2 45 15 6 27

34 1.358 -0.781 0.231 29 24 26 14

35 1.202 -0.789 0.186 32 20 5 19

36 1.179 -0.597 0.17 41 1 23 43

37 1.178 -0.229 0.233 33 28 27 26

38 1.62 1.628 0.229 3 22 16 11

39 1.544 -1.25 0.233 25 30 38 25

40 1.07 -0.502 0.193 39 33 34 24

41 1.467 0.345 0.179 23 21 39 41

42 1.052 -0.629 0.207 38 12 37 45

43 1.289 -0.638 0.161 19 32 19 3

44 1.283 0.363 0.174 24 38 25 23

45 1.426 0.097 0.182 31 8 10 31

30



Table 2. Structure and performance of the simplest pass/fail classification abductive models synthesized 

in a sequence of 12 steps, with inputs selected at a given step excluded in all subsequent steps. Training 

on 1500 cases and evaluation on 500 cases. Specified training parameters for all steps: CPM = 10, 

Number of layers = 1, Size of first layer = 3.

Performance on Evaluation Set
  Step Items Excluded from Selection as Inputs Model Synthesized

MAE Classification Error, %

1 None 0.22 15.2

2 3, 23, 45 0.24 17

3 3, 23, 45, 14, 31, 41  0.26 20.6

4 3, 23, 45, 14, 31, 41, 25, 36, 40 0.25 19.8

5 3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27 0.26 17.8

6
3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27,

11, 17, 43 
0.27 20.6

7
3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27,

11, 17, 43, 7, 24, 34
0.27 17.2

8
3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27,

11, 17, 43, 7, 24, 34, 18, 19, 44 
0.29 20.4

9
3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27,

11, 17, 43, 7, 24, 34, 18, 19, 44, 2, 35, 37
0.29 22.8

10

3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27,

11, 17, 43, 7, 24, 34, 18, 19, 44, 2, 35, 37,

5, 20, 42

0.30 22.8

11

3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27,

11, 17, 43, 7, 24, 34, 18, 19, 44, 2, 35, 37,

5, 20, 42, 10, 15, 29

0.27 15.8

12

3, 23, 45, 14, 31, 41, 25, 36, 40, 6, 26, 27,

11, 17, 43, 7, 24, 34, 18, 19, 44, 2, 35, 37,

5, 20, 42, 10, 15, 29, 1, 4, 9, 13, 16, 21,

22, 28, 30, 32, 39 

0.42 35.6

31
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Table 3. Comparison of the GMDH-based ranking of the 12 groups of test items selected in the 12 steps 

of Table 2 with the rankings based on the average item information function (IIF) at  = 0 and the 

average information gain (IG) per test item in each group. Top ranks represent most effective predictors 

for pass/fail classification. The symmetric Spearman’s footrule criterion is used to measure similarity 

with the GMDH-based ranking.

Group            
Average IIF ( =0) per Test Item Average IG per Test Item  

Number Test Items 

 GMDH-

Based 

Ranking       Value     Ranking       Value   Ranking 

1 3, 23, 45      1 0.3640 1 0.1796 1

2 14, 31, 41        2 0.3526 2 0.1698 2

3 25, 36, 40        3 0.2408 7 0.1591 5

4 6, 26, 27        4 0.2714 3 0.1545 4

5 11, 17, 43        5 0.2667 4 0.1523 3

6 7, 24, 34        6 0.2570 6 0.1422 6

7 18, 19, 44        7 0.2573 5 0.1391 7

8 2, 35, 37        8 0.2242 8 0.1333 8

9 5, 20, 42        9 0.1811 9 0.1205 9

10 10, 15, 29      10 0.1765 10 0.1128 10

11

1, 4, 9, 13, 

16, 21, 22, 

28, 30, 32, 

39

     11 0.1232 11 0.0599 11

12
8, 12, 33, 

38
     12 0.0655 12 0.0434 12

Symmetric 

Spearman’s Footrule 

Similarity Criterion 

with GMDH-Based 

Ranking 

1.0 0.861 0.944 



Table 4. Structure and performance of pass/fail classification abductive models synthesized in the 

sequence of 12 steps in Table 2, with the accumulation of selected inputs at each step as features 

available for selection as model inputs during training. Specified training parameters for all steps: CPM

= 1, Number of layers = 4, Size of first layer = 15. 

% Classification Error on:
Model Model Synthesized Input Items Discarded During Model Synthesis

Training Set Evaluation Set 

1 None 14.9 15.2

2
None

10.7 10.6

3 None 8.9 10.6

4 None 8.3 9.8

5 None 7.6 9.8

6 7,11,24,34,40 8.1 10.6

7 7,11,14,18,24,34,40,44 8.2 10.2

8 2,6,11,14,18,24,27,34,35,37,40,44

9 2,5,6,11,14,18,20,24,27,34,35,37,40,42,44

7.9 12.6

10 2,5,6,7,11,14,15,18,20,24,27,29,34,35,37,40,42,44

11
1,2,4,5,6,7,9,11,13,14,15,16,18,20,21,22,24,27,28,29,30,

32,34,35,37,39,40,42,44

12
1,2,4,5,6,7,8,9,11,12,13,14,15,16,18,20,21,22,24,27,28,

29,30,32,33,34,35,37,38,39,40,42,44

7.9 9.6
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Table 5. Ranking comparison for the 45 test items using six feature ranking/selection methods: (i) The

GMDH-based approach, (ii) Information gain, (iii) Information gain ratio, (iv) Chi-squared, (v)

Probabilistic neural network (PNN) with genetic training, and (vi) Wrapper subset evaluator with a 

neural network classifier and genetic search. 
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Ranked/Selected Items
Rank

i ii iii iv v vi

1 3 45 23 45 45

2 23 31 31 31 34

3 45 23 45 3 10

4 14 3 3 23 24

5 31 36 36 14 29

6 41 14 43 41 15

7 25 11 39 26 35

8 36 26 34 25 3

9 40 43 17 36 19

10 6 25 11 11 31

11 26 41 29 6 23

12 27 6 18 27 36

13 11 17 14 43 43

14 17 27 6 17 26

15 43 34 26 7 1

16 7 40 27 40 41

17 24 7 35 34 14

18 34 18 25 2 13

19 18 2 40 44 7

20 19 44 41 18 32

21 44 35 2 24 25

22 2 24 9 19 28

23 35 42 7 37 16

24 37 19 42 42 6

25 5 37 37 35 40

26 20 29 5 20 20

27 42 20 44 15 37

28 10 39 24 5 9

2,3,5,10,11,13,14,

15,17,18,19,20,21,

23,25,26,27,28,31,

32,35,36,37,39,40,

41,43,45

29 15 5 19 29 33

30 29 15 20 4 21

31 1 4 15 10 12

32 4 10 13 39 44

33 9 9 4 28 38

34 13 28 10 1 30

35 16 1 32 22 5

36 21 22 28 30 18

37 22 30 1 9 42

38 28 13 22 16 39

39 30 16 30 13 17

40 32 32 16 32 8

41 39 21 21 21 22

42 8 12 12 12 4

43 12 33 33 33 27

44 33 38 8 38 2

45 38 8 38 8 11

% overlap for top 15 items with the 

GMDH-based optimum item subset
100 86.7 73.3 93.3 46.7 See text



Table 6. Structure and performance of the pass/fail classification abductive models synthesized using the 

optimum subset of test items at various levels of specified model complexity. Specified values for other 

training parameters: Number of layers = 4, Size of first layer = 15. 

% Classification Error

CPM Model Structure

On Training Set On Evaluation Set

0.5 7.9 10.2

1 7.6 9.8

5 8.1 8.8

10 8.5 9.8
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Table 7. Comparison of the performance of the optimum abductive model synthesized using the 

optimum subset of test items determined by GMDH-based ranking with that of six other item subsets 

selected randomly or determined using other abductive or IRT-based selection criteria. 

Optimum Abductive 

Model
Subset

Selection

Technique

Subset

Identifier
Selection Criterion 

Size of 

Subset

Selected

List of Items in 

Subset

% Overlap 

with

Subset S1 CPM

Classification 

Error, %  on 

Evaluation Set 

S1

Optimum subset 

obtained with GMDH-

based item ranking 

15

3, 6, 11, 14, 17, 23, 25, 

26, 27,  31, 36, 40, 41, 

43, 45 

     100    5 8.8

S2
Complement of 

optimum subset 
30

1, 2, 4, 5, 7, 8, 9, 10, 

12, 13, 15, 16, 18, 19, 

20, 21, 22, 24, 28, 29, 

30, 32, 33, 34, 35, 37, 

38, 39, 42, 44 

 0    2 11Abductive

S3

Abductive model 

trained on the full item 

set

12
3, 10, 17, 19, 23, 25, 

27, 31, 36, 41, 43, 45 
83.3 0.5 9.4

Random S4 Random selection 15
1, 5, 6, 8, 9, 10, 12, 13, 

22, 30, 32, 33, 37, 40, 

43
20 1 13.2

S5

15 items having 

largest values for the  

discrimination power 

parameter, a

15
3, 9, 12, 19, 23, 24, 25, 

29, 31, 32, 33, 38, 39, 

41, 45 
40 0.5 10.6

S6

15 items having 

intermediate values for 

the item difficulty 

parameter, b.

15
3, 4, 6, 7, 10, 14, 16, 

23, 25, 26, 27, 31, 37, 

41, 45 
66.7 0.5 9

IRT

S7

15 items having 

largest values for the 

IIF function at = 0. 

15

3, 6, 11, 14, 19, 23, 24, 

25,  26,  27,  31, 41,  

43, 44, 45
66.7 0.5 8
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Linear

Fig. 1. A typical AIM abductive network model showing various types of functional elements.
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Fig. 2. MAE error (a) and percentage classification error (b) for both the training and evaluation sets 

versus the model number for the abductive models in Table 4. Number of input features (test items)

made available for selection as model inputs increases from 3 for model 1 to 45 for model 12.



Fig. 3. Relative importance of the 45 test items as determined by the genetic learning algorithm of the

NeuroShell classifier. The plot forms the basis for item ranking by method (v) in Table 5.
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GMDH: AUC = 0.975, SE = 0.0058

Random: AUC = 0.949, SE = 0.0093

IRT-IIF: AUC = 0.974, SE = 0.0066

1 - Specificity (false positives)1 – Specificity (false positives)

Fig. 4. Comparison of the ROC characteristics for the optimum abductive models developed 

using subsets S1, S4, and S7 in Table 7. The subsets correspond to GMDH-based ranking and 

selection, random selection, and IRT-based selection, respectively. Indicated on the figure are the 

values for the area under the curve (AUC) and the associated standard error (SE) in each case.
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