
 A Reduct Solving Parallel Algorithm Based on

Relational Extension Matrix

Pei Li Zhou
Faculty of Information Technology

 Monash University
Melbourne Australia

joezhou@mail1.monash.edu.au

Salahadin Mohammed
Dept. of Info. & Comp. Sci.

KFUPM
Dhahran, Saudi Arabia
adam@kfupm.edu.sa

Abstract: In this paper, on the basis of studying
the limitations of the basic rough set model, we
present Tolerance Information Systems, which is
based on a family set of tolerance relations
between objects when given a set of tolerance
relations. The model inherits most of the
characteristics of the basic model of rough set; and
they also have a better effect of approximation
classification. Based on this model, we propose
two algorithms that will give us one near-optimal
attributes reduct in memory and process efficient
way, the first one is a single processor algorithm
which uses concepts from relation and extension
matrices. Based on the first algorithm, its parallel
processor version is proposed, the parallel version
is far more efficient.

Keywords: Machine Learning, Rough
Set, Reduct, Information System,
Extension Matrix, Relation Matrix,
Tolerance Relation, Knowledge
Acquisition, Parallel, Knowledge
Representation

1. Introduction

Rough set theory has some advantages over other
similar formal tools, and has been used widely in

some areas [1, 2, 3, 4], such as knowledge
acquisition, machine learning, knowledge
representation. But there are some limitations in
its application. Firstly, when we could only do
partial classification, the classification done by the
rough set model is completely correct and certain;
it could not give a classification with a kind of
controllable misclassification. However, in a real
time situation, this kind of classification could
give better understanding and processing of the
analyzed data. Secondly, another limitation of
approximation space is from the view point which
the universe U of the considering data objects are
all known, and the derived result from that model
is only usable for that object set. However, in real
life situations, we obviously need to extend the
result derived from the limited object set to a
larger data set. To solve this problem better, we
here present one extended rough set models; that
is based on a family set of tolerance relations
between objects when given a set of tolerance
relations.

2. Tolerance Information Systems
Based on the definition of approximation space K

= (U, R, τ)[4, 5, 6], we first could give the
definition of a rather restricted special tolerance

information system. In the process of mapping τ
from the corresponding information system, we

could get rid of the restriction, to extend it to
general tolerance information system.

Definition 1 One special tolerance information

system is a triple S = (U, A, τ), where U = {x1, x2,,
…, xn } is known as the non-empty finite objects
set, which called Universe. A is the non-empty
finite set of primitive attributes ai (i=1, 2, …,k).

The mapping τ is the mapping from powerset(A)-
{∅, {a1}, {a2}, …, {ak}} into the family set TS(S)
of tolerance relations on universe U. It satisfies
the following characteristics: Every primitive

attribute ai ∈ A is a total function, which is
defined on Xi ⊆ U (i=1, 2, …, k), i.e. ai : Xi → Vai,
where Vai is the value domain of the primitive

attribute ai ; for x ∈ U - Xi , the function ai have no
definition on it. Every primitive attribute ai ∈ A is
corresponding to a tolerance relation I{ai} defined

on Xi ⊆ U (i=1, 2,…,k), i.e. To any attributes
subset B ∈ powerset(A)-{∅, {a1}, {a2}, …,
{ak}}, there exists one related definition on

universe U which is a binary relation τ(B)= IB ∈
TR(S), regarded as the tolerance relation of the
attribute subset B, where it satisfies the following
properties:

a) Monotony of the differences between

information vectors: ∀ x1, x2, y1, y2 ∈ INF(B),
if ((y2-y1) ∪ (y1-y2)) ⊆ ((x2-x1) ∪ (x1-x2)), then
(y1IBy2) → (x1 IB x2);

b) Decreasing monotony of the tolerance

attributes set: ∀ B ⊆ C, and ∀ x, y ∈ INF(C),
we have ((x | C) IC (y | C)) → ((x | B) IB (y |
B)).

In tolerance information system S = (U, A, τ), we
have boarded the limitation to every primitive
attribute. On one side we allow some primitive
attributes of some objects to have missing values,
on the other side we boarded the equivalence
relations from the basic information system into
the tolerance relations. Thus, it becomes closer to
the original description of primitive data table.

But, because we want to generate a tolerance
relation of all objects on universe U based on one

attributes subset B ⊆ A, so when study the specific
definition of the mapping τ, we must give the
processing strategies of missing attribute values.
Note, the reason why we ask for the tolerance
relation to be defined on the universe U, is its
prime purpose is to do reduction of attributes. For
the 2nd item of the definition above, sometimes
we need to extend the definition of tolerance
relation Iai from objects set Xi into the universe U,
then it is noted as I'ai. This requires us to give the
proper strategies to process the missing attribute
values.

The monotony of the information vectors
difference is referred to two information vectors
on attributes set B. If two information vectors with
less attribute values difference are non-tolerant,
and these attribute values difference is contained
in another two information vectors with more
attribute values difference. Then the information
vectors with more attribute values difference are
also non-tolerant. The monotony of the tolerance
attribute set in fact implies that every attribute has
the same kind of importance in assumption
information system; it is a rather restricted
limitation. The monotony of the tolerance
attributes set in the special tolerance information
system actually pays more attention to the
equivalent importance of all attributes. In some
real world implementations, this criterion may not
be satisfied, and we will now define the general
tolerance information system below.

Definition 2 One general tolerance information

system is a triple S=(U, A, τ), where U={x1, x2,… ,
xn} is the non-empty finite objects set known as
Universe. A is the non-empty finite set of
primitive attributes ai (i= 1, 2,…, k). The

mapping τ is the mapping from powerset (A) -{∅
,{a1} ,{a2} ,… ,{ ak}} into the family set TS(S) of
tolerance relations on universe U. It satisfies the
following characteristics: Every primitive attribute

ai∈ A is a total function, which is defined on Xi ⊆
U (i=1, 2, …, k), i.e. ai: Xi → Vai, where Vai is the
value domain of the primitive attribute ai ; for x ∈
U- Xi, the function ai has no definition on it.

Every primitive attribute ai∈ A is corresponds to a
tolerance relation Iai defined on X⊆U (i=1, 2, …,
k). To any attributes subset B ∈ Powerset(A)-{ ∅
, {a1} , {a2} ,…, {ak}}, there exists one related
definition on universe U which is a binary relation

τ(B)=IB ∈ TR(S), regarded as the tolerance
relation of the attribute subset B, where it satisfies
the following properties:

(1) Monotony of the differences between

information vectors: ∀ x1, x2, y1, y2 ∈ INF(B),
if ((y2-y1) ∪ (y1-y2)) ⊆ ((x2-x1) ∪ (x1-x2)),
then (y1 IB y2) → (x1 IB x2);

(2) Increasing monotony of the tolerance

attributes set: ∀ B ⊆ C, and ∀ x, y ∈ INF(C),
we have (x, y) ∈ IB → (x, y) ∈ IC, and (x, y)
¬ ∈ IB → (x, y) ¬ ∈ IC.

The increasing monotony of tolerance attributes
set means that to every two objects x and y, if they
are tolerant (or non-tolerant) on a smaller
attributes set, then they are also tolerant (non-
tolerant) on the attributes set which contains that
attributes set. Generally in real world
implementations, this criterion can be satisfied.
But note that the size of this kind of small
attributes set has certain requirements; this
attributes set must contain the minimum attributes
set which is required by the tolerance of the two
objects. Furthermore, note that in special
tolerance information systems, it asks for the
decreasing monotony of tolerance attributes set,
but here this definition asks for the increasing
monotony of tolerance attributes set. We must
point out that in the special tolerance information
system, satisfying decreasing monotony of
tolerance attributes set will give rise to the
required increasing monotony of tolerance

attributes set, that is ∀ B ⊆ C and ∀ x, y ∈
INF(C), (x, y) ≠ ∈ IB → (x, y) ≠ ∈ IC. We use this
monotony to solve the problems of reduction of
attributes. In later sections when we refer to
attributes monotony, it just meant the decreasing
monotony of the particular tolerance attributes set.
To define the specific tolerance relation between
objects normally requires extra domain
knowledge. For example, in one of the pattern
recognition problems, having 3 major
characteristics {a, b, c} and 5 minor
characteristics {d, e, f, g, h} to describe
recognized objects. The tolerance of two objects
on the characteristics set A={a, b, c, d, e, f, g, h}
is defined as: if there are at least 2 major
characteristics same, or one major characteristic
and at least 4 minor characteristics same, then
these two objects are tolerant. Let is be that known
object x1 and x2 are tolerant on attributes set B={a,
d, e, f, g}, if get rid of attribute a, then object x1
and x2 are non-tolerant on attributes set {d, e, f, g}.

3. Description of the Algorithm Based
on Extension and Relation Matrices

In this section, we will give out the algorithm
which solves a near optimal relative tolerance
reduct. It has three characteristics; first of all it
uses tolerance information systems proposed in
the above session; secondly it uses the concepts of
positive and negative examples (negative
extension matrix) from extension matrix [7, 8, 9];
at last it uses relation matrix for memory storage
and processing.

3.1 The algorithm to solve the near optimal
relative tolerance reduct

Given a tolerance decision information system S =

(U, A, {d}, τ), we propose the algorithm below to
solve the near optimal relative tolerance reduct R
of attribute set A.

Algorithm 3.1.1 the algorithm to solve the near

optimal relative tolerance reduct based on
tolerance extension matrix.

Input: A given tolerance decision information

system S = (U, A, {d}, τ);

Output: one near optimal relative tolerance reduct
R of attribute set A;

Begin

 Divide all objects (U) into positive and
negative examples, according decision attribute (d)
from the given tolerance decision information

system S = (U, A, {d}, τ);

 R = ∅;

 Construct all Negative Extension
Matrices from all positive examples;

Store all Negative Extension Matrices in
memory with the structure of Relational Extension
Matrices.

 Reduct Matrix M= ∩ all Negative

Extension Matrix stored in Relation Matrices;

(Negative Extension Matrix 1 ∩ Negative

Extension Matrix 2 ∩ Negative Extension Matrix

2 ∩ Negative Extension Matrix 3 ∩ Negative

Extension Matrix n)

 R = Remaining attributes that still
contain value “1” in M;

 Output Reduct R;

End
The above are the steps of the algorithm. Now we
give out an example using the above algorithm.

3.2 An example of the above algorithm.

Example below uses the decision table provided
by paper [6] (table 3.1) to explain the
process/steps of algorithm 3.1.1.

 Height Weight haiR Eyes D

1 Short Light Dark Blue 1

2 Tall Heavy Dark Blue 1

3 Tall Heavy Dark Brown 1

4 Tall Heavy Blond Brown 1

5 Short Light Blond Brown 1

6 Tall Heavy Red Blue 2

7 Short Light Blond Blue 2

8 Tall Heavy Blond Blue 2

Table 3.1 The decision table of a

tolerance information system S

We could now construct the tolerance decision
information system based on the decision table

above. It is S = (U, A, {d}, τ), where U =
{1,2,3,4,5,6,7,8}; condition attribute set A =
{H,W,R,E}, where attributes are Height, Weight,
haiR, Eyes, they all generate the equivalence
relation on universe U; decision attribute is d.

Mapping τ Is defined as: ∀B ⊆ A, where
card(B)≥1, if ∀x,y ∈ U on attribute subset B have
values different on one attribute, then these two
objects are non-tolerant, otherwise they are
tolerant.

We then divide U into positive and negative
examples according to the decision attribute d. We
have positive examples {1,2,3,4,5} and negative
examples {6,7,8}. So we now ready to construct
negative extension matrices for the positives

examples and derive reduct matrix M from all

negative extension matrices.

Step 1:
Negative Extension Matrix 1:

Height Weight haiR Eyes
1 Short Light Dark Void
2 Void Void Dark Void
3 Void Void Dark Brown
4 Void Void Blond Brown
5 Short Light Blond Brown
Constructed for Positive Example 1:
[Tall Heavy Red Blue]

Step 2:
Note, please here onwards, we will denote ‘Void’
as ‘*’.

Negative Extension Matrix 2:

Height Weight haiR Eyes
1 * * Dark *
2 Tall Heavy Dark *
3 Tall Heavy Dark Brown
4 Tall Heavy * Brown
5 * * * Brown
Constructed for Positive Example 2:
[Short Light Blond Blue]

Step 3:
Negative Extension Matrix 3:

Height Weight haiR Eyes
1 Short Light Dark *
2 * * Dark *
3 * * Dark Brown
4 * * * Brown
5 * Light * Brown
Constructed for Positive Example 3:
[Tall Heavy Blond Blue]

Step 4:

Negative Extension Matrix 1 ∩ Negative

Extension Matrix 2:

Height Weight haiR Eyes

1 * * Dark *
2 * * Dark *
3 * * Dark Brown
4 * * * Brown
5 * * * Brown

Step 5:

Negative Extension Matrix 1 ∩ Negative

Extension Matrix 2 ∩ Negative Extension Matrix

3:

Height Weight haiR Eyes
1 * * Dark *
2 * * Dark *
3 * * Dark Brown
4 * * * Brown
5 * * * Brown

The above five steps illustrate how negative
extension matrices are constructed. We will not
use the original extension matrix format here,
because of three reasons:

1) The extension matrix is memory hungry even

with values of “void”, they still have been
allocated memory for in such data structure;
in our proposed relational extension matrix,
we could use ‘0’ to represent “void”.

2) Our aim of construct extension matrices here

is to study the relationship between
objects/attributes, not their attribute values, so
the exact values are not important to us, thus
we could use ‘1’ to represent a relationship
exists in our relational extension matrix.

3) It takes a lot of time to perform value

comparisons during the ∩ operations. With

the introduction of relational extension

matrix, ∩ operations are just much easy to

perform and natural to digital computers.

Thus we could repeat the above five steps using
our relational extension matrices below. It is
memory and process efficient due to the uses of
‘1’ / ‘0’ only in the relational extension matrix, it
is very efficient to store in the memory (integer
only) and efficient in processing as well (easy to
construct and quick to compare).

Step 1:
Relational Extension Matrix 1:
 Height Weight Hair Eyes
1 1 1 1 0
2 0 0 1 0
3 0 0 1 1
4 0 0 1 1
5 1 1 1 1
Constructed for Positive Example 1:
[Tall Heavy Red Blue]

Step 2:
Relational Extension Matrix 2:
 Height Weight Hair Eyes
1 0 0 1 0
2 1 1 1 0
3 1 1 1 1
4 1 1 0 1
5 0 0 0 1
Constructed for Positive Example 2:
[Short Light Blond Blue]

Step 3:
Relational Extension Matrix 3:
 Height Weight Hair Eyes
1 1 1 1 0
2 0 0 1 0
3 0 0 1 1
4 0 0 0 1
5 0 1 0 1
Constructed for Positive Example 3:
[Tall Heavy Blond Blue]

Step 4:

Relational Extension Matrix 1 ∩ Extension

Matrix 2:
 Height Weight Hair Eyes
1 0 0 1 0

2 0 0 1 0
3 0 0 1 1
4 0 0 0 1
5 0 0 0 1

Step 5:

Relational Extension Matrix 1 ∩ Relational

Extension Matrix 2 ∩ Relational Extension Matrix

3:
 Height Weight Hair Eyes
1 0 0 1 0
2 0 0 1 0
3 0 0 1 1
4 0 0 0 1
5 0 0 0 1

This above relational extension matrix is the

Reduct Matrix M we illustrated in algorithm 3.1.
Take out the remaining attributes whose values
are “1”s, then we got two attributes: Hair and
Eyes.

We could tell that our near optimal reduct (Hair,
Eyes) is in this case the optimal reduct that could

be solved [10]. Please note that our algorithm may
not always give the optimal reduct, but it will
certainly contain one optimal reduct, so we always
will have a near optimal reduct. Please note for
space reason we have used a small table, so in this
example, our tolerance relations are the same as
equivalence relations. For uses of tolerance
relations in tolerance information systems to solve
reducts, refer to reference [11].

4. The Proposed Parallel Algorithm

In algorithm 3.1.1 discussed in Section 3.1, we
can see that each ai value in a positive example is
matched with all the ai values of the negative
examples. Our proposed algorithm exploits this
property to do the same computation in parallel in

a mesh of m×n processors. In the mesh, a
processor in row i and column j is denoted as pi,j,

for 0≤i<m and for 0≤j<n.

The algorithm starts by partitioning U
row wise into u and v, where u consists of all the
positive examples and v consists of all the
negative examples of U. Let |u| and |v| be the
number of examples in u and v respectively. Also,
let ui,j represent the value of ai in the positive
example i, and vi,j represent the value of aj in the

negative example i.
The algorithm starts by evenly

distributing the values in u into m×n partitions.
Each partition is labelled as gi,j where 0≤i<m
and 0≤j<n. Each gi,j consists of us,t, where

()
m
u

is
m
u

i ×+<≤× 1
 and

() .1
n
kjt

n
kj ×+<≤×

Similarly v is partitioned in to n
partitions. Each partition is labelled as hi, where

0≤i<n. Each hi, consists of vj,i, for

()
n
kit

n
ki ×+<≤× 1

 and for vj <≤0 .

The algorithm then transfers the values in
gi,j and hj to pi,j. Then each pr,c will

compute:

 (1) jsji
s

ji vuw ,,, ⊗=

Where
()

m
u

ri
m
u

r ×+<≤× 1
,

()
n
kcj

n
kc ×+<≤× 1

, and

vs <≤0 . if , and

, if .

jijsji uvu ,,, =⊗ jsji vu ,, =

nullvu jsji =⊗ ,, jsji vu ,, ≠

At last, each pr,c will compute:

1

,
2
,

1
,

0
,, ... −= v

jijijijiji wwwwZ IIII (2)

Where
()

m
u

ri
m
u

r ×+<≤× 1
 and

()
n
kcj

n
kc ×+<≤× 1

.

5 Cost Analysis

The cost of the proposed parallel algorithm
consists of communication cost and computation
cost, which we will denote as Ccomm and
Ccomp respectively [9]. The communication cost

is the time taken to transfer the g and the h values
from processor p0,0 to processor pm−1,n−1,

while the computation cost is the time taken to
compute the w and z values by any one of the

processors, say . 1,1 −− nmp

The communication cost is further
divided into Cstartup cost and Cdata cost. The
Cstartup is the cost of packing the data to be

transferred at the source and then unpacking it at
the destination. The Cdata is the cost of

transferring one attribute value from one processor
to another.

The communication cost of the proposed
parallel algorithm is the cost of transferring the g
and the h values from p0,0 to pm−1,n−1.

The cost of transferring the g values is

)2()(−+×××+ nmt
n
k

m
u

t datastartup
 and the cost of

transferring the h values is

)2()(−+×××+ nmt
n
kvt datastartup

. Therefore, the
total communication cost is

)2())(2(−+×+××+×= nmv
m
u

t
n
ktC datastartupcomm

 (3)
Computation cost of the proposed

parallel algorithm is the cost of computing the w
and the z values. The cost of computing w values

is
v

nm
ku
×

×
×

 The cost of computing the z values is

)1(−×
×

×
v

nm
ku

. Therefore, the total computation
cost is

 nm
vku

Ccomp ×

−×××
=

)12(

 (4)
Hence, the total cost of the proposed

parallel algorithm is:

 commCcompCpC +=
 (5)

Computation/Communication Ratio: The

communication complexity is)(u
m
kO × and

the computation complexity is)(u
n
v

m
kO ×× .

The ratio of

commt
compt

 shows that as |U| increases,

the effect of the communication cost decreases,
thus the performance of the parallel algorithms
increases.

Speedup: Speed up is the measure of how
much faster the parallel algorithm is compared to
the fastest single processor algorithm known to
solve the same problem. The cost of the single
processor algorithm discussed in Section 3.1 is

)12(−×××= vkuCs . Hence, for a given nm×

mesh, the speedup, which is
p

s

C
C

will be closer to

m×n as |U| increases.

6 Conclusion

In short, through this paper, on the basis of
studying the limitations of the basic rough set
model, we present an extended rough set model
that is based on a family set of tolerance relations
between objects when given a set of tolerance
relations. This model inherits most of the
characteristics of the basic model of rough set; and
it also has a better effect of approximation
classification. And the concepts of general and
specific tolerance information systems are
presented, so they can be further used to illustrate
the relationships between objects in various of real
applications.
In the extended rough set model based on the
tolerance relations proposed here, according to
normal primitive data tables, we could set up a
corresponding tolerance information system. On
the tolerance information system, we studied the
uses of the negative and positive examples
concepts from Extension Matrix; from there we
proposed an algorithm that gave us one near-
optimal attribute reduct based on both extension

and relation matrices (Relational Extension
Matrix) that is memory saving. Based on this
algorithm we further developed a parallel version.
Due to the nature of the relational extension
matrices used in our algorithm 3.1, the parallel
version is very efficient.
Acknowledgements: This work has been supported by

King Fahd University of Petroleum and Minerals.

References
[1] Pawlak Z. Rough Sets: Theoretical Aspects of

Reasoning about Data. Dordrecht: Kluwer

Acasemic Publishers, 1991.

[2] Pawlak Z, Grzymala-Busse J, Slowinski R,

Ziarko W. Rough sets. Communications of the

ACM, 1995, 38(11): 89-95.

[3] Slowinski R. Intelligent Decision Support:

Handbook of Applications and Advances of

Rough Sets Theory. Dordrecht: Kluwer

Academic Publishers, 1992.

[4] Ziarko W P ed. Rough Sets, and Fuzzy Sets and

Knowledge Discovery (RSKD'93). London:

Springer-Verlag, 1994.

[5] Skowron A, Rauszer C. The discernibility

matrices and functions in information systems.

In: Slowinski R ed. Intelligent Decision Support:

Handbook of Applications and Advances of the

Rough Sets Theory. Dordrecht: Kluwer

Academic Publishers, 1992, 331-362.

[6] Skowron A, Stepaniuk J. Generalized

approximation spaces. In: Lin T Y ed.

Conference Proceedings of the Third

International Workshop on Rough Sets and Soft

Computing (RSSC'94). San Jose, California,

USA, 1994, 156-163.

[7] Hong, J. R. AE1: An Extension Matrix

Approximate Method for the General Covering

Problem. International Journal of Computer and

Information Science 1985, 14: 421-437.

[8] Hong J. R. and Uhrik C., The Extension Matrix

Approach to Attribute-Based Learning, Progress

in Machine Learning, I. Bratko and N. Lavrac

(Eds.), Wilmslow: Sigma Press, England, 1987.

[9] Wilkson B. and Allen M. Parallel programming:

Techniques and applications using networked

workstations and parallel computers. Prentice

Hall, 2005.

[10] Zhou P. L. Data Mining Using an

Extending Rough Set Model. Monash University,

Australia, 2001.

[11] Zhou P. L. Dynamic Reducts of Tolerance

Information Systems. The International

Conference on Artificial Intelligence (ICAI’03).

Las Vegas, Nevada, USA, 2003.

