Security
Objectives

- To discuss security threats and attacks
- To explain the fundamentals of encryption, authentication, and hashing
- To examine the uses of cryptography in computing
- To describe the various countermeasures to security attacks
Outline

- The Security Problem
- Program Threats
- System and network threats
- Cryptography as a Security Tool
- User Authentication
- Implementing Security Defenses
- Firewalling to Protect Systems and Networks
- Computer-Security Classifications
- The Security Problem

- Security must consider external environment of the system, and protect the system resources

- Intruders (crackers) attempt to breach security

- **Threat** is potential security violation

- **Attack** is attempt to breach security

- Attack can be accidental or malicious

- Easier to protect against accidental than malicious misuse
-- Security Violations

- **Categories**
 - Breach of confidentiality
 - Breach of integrity
 - Breach of availability
 - Theft of service
 - Denial of service

- **Methods**
 - Masquerading (breach authentication)
 - Replay attack
 - Man-in-the-middle attack
-- Standard Security Attacks

- **Normal**
 - sender
 - communication
 - receiver

- **Masquerading**
 - sender
 - communication
 - attacker
 - communication
 - receiver

- **Man-in-the-middle**
 - sender
 - communication
 - attacker
 - communication
 - receiver
-- Security Measure Levels

- Security must occur at four levels to be effective:
 - Physical
 - Human
 - Avoid social engineering, phishing, dumpster diving
 - Operating System
 - Network

- Security as weak as the weakest chain.

- In the remainder of this chapter, we address security at the network and operating-system level.
- Program Threats …

- Trojan Horse
 - Code segment that misuses its environment
 - Exploits mechanisms for allowing programs written by users to be executed by other users
- Spyware, pop-up browser windows, covert channels
- Trap Door
 - Specific user identifier or password that circumvents normal security procedures
 - Could be included in a compiler
- Logic Bomb
 - Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)
-- Hypothetical Stack Frame

Before attack

(a) return address
 saved frame pointer
 buffer(BUFFER_SIZE - 1)

 (b) address of modified shell code
 address of modified shell code
 NO_OPS

 copied

After attack
Program Threats

Virus

- Executable code often sent as an attachment to an e-mail message or hidden in files such as audio clips, video clips and games
- Attaches to or overwrites other files to replicate itself
- Can corrupt files, control applications or even erase a hard drive
- Can be spread across a network simply by sharing “infected” files embedded in e-mail attachments, documents or programs
Many categories of viruses, literally many thousands of viruses
- File
- Boot
- Macro
- Source code
- Polymorphic
- Encrypted
- Stealth
- Tunneling
- Multipartite
- Armored
- System and Network Threats

- Worm
 - Executable code that spreads by infecting files over a network
 - Rarely requires any user action to propagate
 - Does not need to be attached to another program or file to spread

- Once a virus or worm is released, it can spread rapidly, often infecting millions of computers worldwide within minutes or hours

- Port scanning
 - Automated attempt to connect to a range of ports on one or a range of IP addresses

- Denial of Service
 - Overload the targeted computer preventing it from doing any useful work
 - Distributed denial-of-service (DDOS) come from multiple sites at once
- Cryptography …

- Broadest security tool available
 - Source and destination of messages cannot be trusted without cryptography
 - Means to constrain potential senders (sources) and/or receivers (destinations) of messages

- Based on secrets (keys)
 - Symmetric
 - Asymmetric
- Cryptography

- Keys are generally distributed selectively to computers in the network.

- A sender can encode its message using the key so that only the computer with a certain key can decode the message. Key becomes the destination.

- A recipient of a message verify that the message was created by some computer possessing a certain key – key is the source of the message.

- Important: It should be computationally infeasible to derive the key from messages used to generate and from any other public information.
-- Secure Communication over Insecure Medium

- Key exchange
 - Write message m
 - Encryption key k
 - Encryption algorithm E
 - Cipher text c = E(k)(m)
 - Insecure channel
 - Decryption key k
 - Decryption algorithm D
 - Plaintext m = D(k)(c)
 - Read message m
 - Attacker

March 29, 2008
Operating Systems: The course
Encryption is used to keep sensitive data and information more secure when transmitted over unreliable links as an OS may not offer sufficient protection for such highly sensitive data.

Encrypt clear text (readable form) into cipher text (internal form).

Properties of good encryption technique:
- Relatively simple for authorized users to encrypt and decrypt data.
- Encryption scheme depends not on the secrecy of the algorithm but on a parameter of the algorithm called the encryption key.
- Extremely difficult for an intruder to determine the encryption key.
-- Symmetric Cryptography …

- Uses the same secret key to encrypt and decrypt a message
 - Sender
 - Encrypts a message using the secret key
 - Sends encrypted message to the intended recipient
 - Recipient
 - Decrypts the message using the same secret key
... -- Symmetric ...
Limitation of secret-key cryptography

- Before two parties can communicate securely, they must find a secure way to exchange the secret key
 - Can be done by courier or a key distribution center (KDC)
 - KDCs generate session keys to clients

Examples of secret-key cryptography:

- DES
- 3DES
- AES
--- Distributing a session key with a key distribution center

1. Sender
 "I want to communicate with the receiver"
 Key distribution center (KDC)

2. Session key (symmetric secret key)

3. Receiver
 Session key encrypted with the receiver’s KDC key

Session key encrypted with the sender’s KDC key

Encrypt

Encrypt
Asymmetric (public-key) Cryptography…

- Solves the problem of securely exchanging symmetric keys
- Asymmetric
 - Employs two inversely related keys:
 - Public key
 - Freely distributed
 - Private key
 - Kept secret by its owner
- If the public key encrypts a message, only the corresponding private key can decrypt it
...-- Asymmetric Cryptography ...

Diagram:
- Sender -> Encrypt -> Receiver's public key -> Ciphertext (XY%#? 42%Y) -> Communications medium (such as Internet) -> Receiver's private key -> Decrypt -> Receiver
- Sender -> Plaintext (Buy 100 shares of company X) -> Receiver
- Receiver -> Plaintext (Buy 100 shares of company X)
… -- Asymmetric Cryptography …

- If the decryption key is the sender’s public key and the encryption key is the sender’s private key, the sender of the message can be authenticated
 - Message should be encrypted first using the receiver’s public key, then with the sender’s secret key
 - Public key provides confidentiality
 - Secret key provides authentication

- Examples of public-key cryptography:
 - RSA
 - Pretty Good Privacy (PGP)
- Secure Communication …

- Five fundamental requirements for a successful, secure transaction
 - Privacy
 - Ensuring that the information transmitted over the Internet has not been viewed by a third party
 - Integrity
 - Ensuring that the information sent or received has not been altered
 - Authentication
 - Verifying the identities of the sender and receiver
 - Authorization
 - Managing access to protected resources on the basis of user credentials
 - Nonrepudiation
 - Ensuring that the network will operate continuously
Maintaining the secrecy of private keys is essential to the maintenance of cryptographic system security.

Most security breaches result from poor key management rather than cryptanalytic attacks.
- For example: The mishandling of private keys, resulting in key theft.

Key generation:
- The process by which keys are created.
- Important to use a key-generation program that can generate a large number of keys as randomly as possible.
- Key security is improved when key length is large enough that brute-force cracking is computationally infeasible.
-- Key Agreement protocol …

- public-key algorithms
 - Most often employed to exchange secret keys securely

- Key agreement protocol
 - The process by which two parties can exchange keys over an unsecure medium
 - Digital envelopes
 - Digital signatures (using the SHA-1 and MD5 hash algorithms)
--- Digital Envelop

1. Sender
 - Buy 100 shares of company X
 - Plaintext
 - Encrypt
 - Symmetric secret key
 - Ciphertext

2. Encrypt
 - Symmetric secret key
 - Receiver’s public key
 - Encrypted symmetric secret key

3. Digital envelope
 - Received key
 - Decrypted
 - plaintext
 - Receiver
--- Digital Signatures

- The electronic equivalents of written signatures
- Developed to address the absence of authentication and integrity in public-key (Asymmetric) cryptography
- Authenticate senders’ identities
 - Sender Hashes the message to produce message digest
 - Encrypts the message digest and the message before sending
- Difficult to forge
- Hash value uniquely identifies a message
 - Examples
 - Secure Hash Algorithm (SHA-1)
 - MD5 Message Digest Algorithm
 - Digital Signature Algorithm (DSA)
- User Authentication ...

Identifying users and the actions they are allowed to perform

A user can be identified by:

- a unique characteristic of the person (e.g., fingerprints, voiceprints, retina scans and signatures)
- ownership of an item (e.g., badges, identification cards, keys and smart cards)
- user knowledge (e.g., passwords, personal identification numbers (PINs) and lock combinations)
--- Basic Authentication

- Simple password protection
 - Most common authentication scheme
 - The user chooses a password, memorizes it and presents it to the system to gain admission to a resource or system

- Weaknesses of password protection
 - Users tend to choose passwords that are easy to remember
 - For example: the name of a spouse or pet
 - Someone who has obtained personal information about the user might try to log in several times using passwords that are characteristic of the user
 - Several repeated attempts might result in a security breach

- Password salting
 - Technique that inserts characters at various positions in the password before encryption
 - Can thwart attempts at recovering passwords from password files
Password Salting

<table>
<thead>
<tr>
<th>Plaintext</th>
<th>Ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>password</td>
<td>cGFzc3dvcmQ=</td>
</tr>
<tr>
<td>password as swalord</td>
<td>cHNhc2Fzd2xvcnRk</td>
</tr>
<tr>
<td>newpassword</td>
<td>bmV3cGFzc3dvcmQ=</td>
</tr>
<tr>
<td>newpassword as word</td>
<td>bnNld2FwbGF0c3Nld29kcmQ=</td>
</tr>
</tbody>
</table>
User Authentication

- Encrypted password
- One time password
- Biometrics
 - Uses unique personal information to identify a user
 - Fingerprints
 - Eyeball iris scans
 - Face scans
- Smart cards
 - Often designed to resemble a credit card
 - Can serve many different functions, from authentication to data storage
 - Most popular: memory cards and microprocessor cards
- Implementing Security Defenses

- Firewalls
- Intrusion detection systems
- Antivirus software
- Security patches
- Secure file systems
- Many others
-- Firewalls

- **Firewalls**
 - Protect a local area network (LAN) from intruders outside the network
 - Police inbound and outbound traffic for the LAN

- **Types of firewalls**
 - Packet-filtering firewall
 - Inspects packets for inconsistencies such as incorrect source address
 - Application-level gateways
 - Inspect packets for malicious payloads (code)
-- Intrusion-Detection Systems (IDSs)

IDSs

- Monitor networks and application log files
 - Logs record information about system behavior, such as:
 - The time at which operating system services are requested
 - The name of the process that requests them
- Examine log files to alert system administrators of suspicious application and/or system behavior
- If an application exhibits erratic or malicious behavior, an IDS can halt the execution of that process

Host-based intrusion detection

- Specially used to detect Trojan horse

Network-based intrusion detection

- Mainly used to detect denial of service (Dos)
Antivirus software

- Attempts to protect a computer from a virus and/or identify and remove viruses on that computer
- Various techniques used to detect and remove viruses from a system
 - None can offer complete protection
Antivirus Software

- **Signature-scanning virus detection**
 - Relies on knowledge about the structure of the computer virus’s code
 - Uses a known virus list
 - Can be particularly ineffective against variants and polymorphic viruses

- **Heuristic scanning**
 - Can prevent the spread of viruses by detecting and suspending any program exhibiting virus-like behavior:
 - Replication, residence in memory and/or destructive code
 - Primary strength: it can detect viruses that have not yet been identified
-- Security Patches

Security patches

- Code releases that address security flaws
- Simply releasing a patch for a security flaw is insufficient to improve security
- Developers should address security flaws by:
 - Notifying their users quickly
 - Providing software that facilitates the process of applying security patches
 - Example: Hotfixes
 - Microsoft Automatic Updates
Secure File Systems

- Secure file systems
 - Protect sensitive data regardless of how the data is accessed
- Encrypting File System (EFS)
 - Uses cryptography to protect files and folders in an NTFS file system
 - Uses secret-key and public-key encryption to secure files
-- Others

- Auditing, accounting, and logging of all or specific system or network activities
- Example
 - Tripwire
Computer Security Classifications

- U.S. Department of Defense outlines four divisions of computer security: **A**, **B**, **C**, and **D**.

- **D** – Minimal security.

- **C** – Provides discretionary protection through auditing. Divided into **C1** and **C2**. **C1** identifies cooperating users with the same level of protection. **C2** allows user-level access control.

- **B** – All the properties of **C**, however each object may have unique sensitivity labels. Divided into **B1**, **B2**, and **B3**.

- **A** – Uses formal design and verification techniques to ensure security.
End of Chapter 15