
March 24, 2008 ADBS: Concurrency control 1

Concurrency Control Techniques

Chapter 18

March 24, 2008 ADBS: Concurrency control 2

Chapter Objectives

Discusses a number of concurrency control techniques that are
used to insure the noninterference or isolation property (one of
the ACID properties) of concurrently executing transactions.

SID Name Major YOB GPA

221234 Ali ICS 1984 3.2

221543 Ahmed COE 1983 3.3

221965 Emad SE 1985 3.4

222785 Fahd SWE 1984 3.5

223542 Lutfi ICS 1984 3.6

229851 Basam COE 1985 3.7

A

B

March 24, 2008 ADBS: Concurrency control 3

- Chapter Outline

Purpose of Concurrency Control

Two-Phase Locking Based Concurrency Control

Timestamp Based Concurrency Control

Multiversion Concurrency Control Technique

March 24, 2008 ADBS: Concurrency control 4

- Purpose of Concurrency Control

To enforce Isolation or noninterference among conflicting
transactions.

To preserve database consistency through consistency
preserving execution of transactions.

To resolve read-write and write-write conflicts

Example: In concurrent execution environment if T1 conflicts with
T2 over a data item A, then the existing concurrency control
decides if T1 or T2 should get the A and if the other transaction is
rolled-back or waits.

March 24, 2008 ADBS: Concurrency control 5

… - Two-Phase Locking (2PL) …

A lock is a variable associated with a data item that describes the
status of the item with respect to possible operations that can be
applied to it.

Locking is an operation which secures a permission to Read or a
permission to Write a data item for a transaction.

Example: Lock (X): Data item X is locked in behalf of the requesting
transaction

Unlocking is an operation which removes these permissions from
the data item.

Example: Unlock (X): Data item X is made available to all other
transactions.

Lock and Unlock are Atomic operations.

March 24, 2008 ADBS: Concurrency control 6

-- 2PL: Essential components …

Two locks modes:

1. Shared mode: shared lock (X). More than one transaction can
apply share lock on X for reading its value but no write lock can be
applied on X by any other transaction.

2. Exclusive mode: Write lock (X). Only one write lock on X can
exist at any time and no shared lock can be applied by any other
transaction on X.

Lock

Yes No

No No

Conflict matrix

March 24, 2008 ADBS: Concurrency control 7

-- 2PL: Essential components …

SID Name Major YOB GPA

221234 Ali ICS 1984 3.2

221543 Ahmed COE 1983 3.3

221965 Emad SE 1985 3.4

222785 Fahd SWE 1984 3.5

223542 Lutfi ICS 1984 3.6

229851 Basam COE 1985 3.7

T1 T3

T2

March 24, 2008 ADBS: Concurrency control 8

… -- 2PL: Essential components …

Lock Manager: Managing locks on data items.

Lock table: Lock manager uses it to store the identify of
transaction locking a data item, the data item, lock mode and
pointer to the next data item locked. One simple way to implement
a lock table is through linked list

T1
Transaction ID Data item id lock mode Ptr to next data item

NextX1 Read

March 24, 2008 ADBS: Concurrency control 9

… -- 2PL: Essential components …

Database requires that all transactions should be well-formed. A
transaction is well-formed if:

It must lock the data item before it reads or writes to it.

It must unlock the data item after it is done with it.

It must not lock an already locked data item.

It must not try to unlock a free data item.

March 24, 2008 ADBS: Concurrency control 10

… -- 2PL: Essential components …

The following code performs the read-lock operation:

B: if LOCK (X) = “unlocked” then
begin LOCK (X) ← “read-locked”;

no_of_reads (X) ← 1;
end
else if LOCK (X) ← “read-locked” then

no_of_reads (X) ← no_of_reads (X) +1
else begin wait (until LOCK (X) = “unlocked” and

the lock manager wakes up the transaction);
go to B

end;

March 24, 2008 ADBS: Concurrency control 11

… -- 2PL: Essential components …

The following code performs the write-lock operation:

B: if LOCK (X) = “unlocked” then
begin LOCK (X) ← “write-locked”;

else begin
wait (until LOCK (X) = “unlocked” and
the lock manager wakes up the transaction);
go to B

end;

March 24, 2008 ADBS: Concurrency control 12

… -- 2PL: Essential components …

The following code performs the unlock operation:

if LOCK (X) = “write-locked” then
begin LOCK (X) ← “unlocked”;

wakes up one of the transactions, if any
end
else if LOCK (X) ← “read-locked” then

begin
no_of_reads (X) ← no_of_reads (X) -1
if no_of_reads (X) = 0 then
begin

LOCK (X) = “unlocked”;
wake up one of the transactions, if any

end
end;

March 24, 2008 ADBS: Concurrency control 13

… -- 2PL: Essential components …

Lock conversion

Lock upgrade: existing read-lock to write-lock

if Ti has a read-lock (X) and Tj has no read-lock (X) (i ≠ j) then
convert read-lock (X) to write-lock (X)

else
force Ti to wait until Tj unlocks X

Lock downgrade: existing write-lock to read-lock

Ti has a write-lock (X) (*no transaction can have any lock on X*)
convert write-lock (X) to read-lock (X)

March 24, 2008 ADBS: Concurrency control 14

… -- 2PL: Essential components …

A transaction is said to follow 2PL protocol if all its locking
operations precede its first unlock operation.

2PL algorithm

2 Phases

1. Locking (Growing) Phase: A transaction applies locks (read or write)
on desired data items one at a time

2. Unlocking (Shrinking) Phase: A transaction unlocks its locked data
items one at a time.

Requirement: For a transaction these two phases must be
mutually exclusively, that is, during locking phase unlocking phase
must not start and during unlocking phase locking phase must not
begin.

March 24, 2008 ADBS: Concurrency control 15

… -- 2PL: Essential components …

T1 T2

read_lock (Y); read_lock (X);
read_item (Y); read_item (X);
unlock (Y); unlock (X);
write_lock (X); Write_lock (Y);
read_item (X); read_item (Y);
X:=X+Y; Y:=X+Y;
write_item (X); write_item (Y);
unlock (X); unlock (Y);

T1 and T2 are NOT following 2PL protocol

March 24, 2008 ADBS: Concurrency control 16

… -- 2PL: Essential components …

T3 T4

read_lock (Y); read_lock (X);
read_item (Y); read_item (X);
write_lock (X); Write_lock (Y);
unlock (Y); unlock (X);
read_item (X); read_item (Y);
X:=X+Y; Y:=X+Y;
write_item (X); write_item (Y);
unlock (X); unlock (Y);

T3 and T4 are following 2PL protocol

March 24, 2008 ADBS: Concurrency control 17

-- 2PL Algorithms

Two-phase policy generates two locking algorithms:

1. Conservative: Prevents deadlock by locking all desired data
items before transaction begins execution.

2. Basic: Transaction locks data items incrementally. This may
cause deadlock which is dealt with

Strict: A more stricter version of Basic algorithm where
unlocking is performed after a transaction terminates (commits
or aborts and rolled-back). This is the most commonly used two-
phase locking algorithm

March 24, 2008 ADBS: Concurrency control 18

-- Dealing with Deadlock and Starvation …

T1 T2

read_lock (Y);
read_item (Y);

read_lock (X);
read_item (Y);

write_lock (X);
(waits for X)

write_lock (Y);
(waits for Y)

T1 and T2 did follow two-phase policy but they are deadlock

March 24, 2008 ADBS: Concurrency control 19

… -- Dealing with Deadlock and Starvation …

SID Name Major YOB GPA

221234 Ali ICS 1984 3.2

221543 Ahmed COE 1983 3.3

221965 Emad SE 1985 3.4

222785 Fahd SWE 1984 3.5

223542 Lutfi ICS 1984 3.6

229851 Basam COE 1985 3.7

T1

T2

: Holds : Requests

March 24, 2008 ADBS: Concurrency control 20

… -- Dealing with Deadlock and Starvation …

Three techniques to solve deadlock problems

Deadlock prevention
A transaction locks all data items it refers to before it begins
execution

Deadlock detection and resolution
A wait-for-graph is created using the lock table. As soon as a
transaction is blocked, it is added to the graph. When a chain
like: Ti waits for Tj waits for Tk waits for Ti or Tj occurs, then this
creates a cycle. One of the transaction of the cycle is selected
and rolled back

Deadlock avoidance
As soon as the algorithm discovers that blocking a transaction is
likely to create a cycle, it rolls back the transaction

March 24, 2008 ADBS: Concurrency control 21

… -- Dealing with Deadlock and Starvation …

Starvation

Starvation occurs when a particular transaction consistently
waits or restarted and never gets a chance to proceed further.
In a deadlock resolution it is possible that the same transaction
may consistently be selected as victim and rolled-back. This
limitation is inherent in all priority based scheduling
mechanisms. In Wound-Wait scheme a younger transaction
may always be wounded (aborted) by a long running older
transaction which may create starvation.

March 24, 2008 ADBS: Concurrency control 22

- Timestamp based concurrency control algorithm …

A timestamp is a unique identifier created by a DBMS to identify
a transaction.

A timestamp is a monotonically increasing variable (integer)
indicating the age a transaction. A larger timestamp value
indicates a younger transaction.

Timestamp based algorithm uses timestamp to serialize the
execution of concurrent transactions.

March 24, 2008 ADBS: Concurrency control 23

…- Timestamp based concurrency control algorithm …

In order to use timestamp values for serializable scheduling
of transactions, the transaction manager of a DBMS
associates with each database item X two timestamp (TS)
values:

Read_TS(X): The timestamp (identifier) of the youngest
transaction that has read X successfully.

Write_TS(X): The timestamp (identifier) of the youngest
transaction that has written X successfully.

March 24, 2008 ADBS: Concurrency control 24

… - Timestamp based concurrency control algorithm …

Basic Timestamp Ordering
1. Transaction T issues a write_item(X) operation:

a) If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then an
younger transaction has already read the data item so abort and
roll-back T and reject the operation

b) If the condition in part (a) does not exist, then execute
write_item(X) of T and set write_TS(X) to TS(T).

2. Transaction T issues a read_item(X) operation:
a) If write_TS(X) > TS(T), then an younger transaction has already

written to the data item so abort and roll-back T and reject the
operation.

b) If write_TS(X) ≤ TS(T), then execute read_item(X) of T and set
read_TS(X) to the larger of TS(T) and the current read_TS(X).

March 24, 2008 ADBS: Concurrency control 25

… - Timestamp based concurrency control algorithm …

Strict Timestamp Ordering (for ease of recoverability)

1. Transaction T issues a write_item(X) operation:

If TS(T) > read_TS(X), then delay T until the
transaction T’ that wrote or read X has terminated
(committed or aborted).

2. Transaction T issues a read_item(X) operation:

If TS(T) > write_TS(X), then delay T until the
transaction T’ that wrote or read X has terminated
(committed or aborted).

March 24, 2008 ADBS: Concurrency control 26

- Multiversion concurrency control technique Concept …

This approach maintains a number of versions of a data item and
allocates the right version to a read operation of a transaction.
Thus unlike other mechanisms a read operation in this mechanism
is never rejected.

Side effect: Significantly more storage (RAM and disk) is
required to maintain multiple versions. To check unlimited growth
of versions, a garbage collection is run when some criteria is
satisfied

March 24, 2008 ADBS: Concurrency control 27

- Multiversion concurrency control technique Concept …

Assume X1, X2, …, Xn are the version of a data item X created
by a write operation of transactions. With each Xi a read_TS
(read timestamp) and a write_TS (write timestamp) are
associated.

read_TS(Xi): The read timestamp of Xi is the largest of all the
timestamps of transactions that have successfully read version Xi

write_TS(Xi): The write timestamp of Xi that wrote the value
of version Xi.

A new version of Xi is created only by a write operation.

March 24, 2008 ADBS: Concurrency control 28

- Multiversion concurrency control technique Concept …

To ensure serializability, the following two rules are used.

1. If transaction T issues write_item (X) and version i of X has
the highest write_TS(Xi) of all versions of X that is also less
than or equal to TS(T), and read _TS(Xi) > TS(T), then abort
and roll-back T; otherwise create a new version Xi and
read_TS(X) = write_TS(Xj) = TS(T).

2. If transaction T issues read_item (X), find the version i of X
that has the highest write_TS(Xi) of all versions of X that is
also less than or equal to TS(T), then return the value of Xi to
T, and set the value of read _TS(Xi) to the largest of TS(T)
and the current read_TS(Xi).

Rule 2 guarantees that a read will never be rejected.

March 24, 2008 ADBS: Concurrency control 29

END

