
March 23, 2008 ICS102: Classes 2 1

Classes 2/5

March 23, 2008 ICS102: Classes 2 2

Outline

Overloading

Constructors

Default Variable Initializations

The methods equals and toString

Example

March 23, 2008 ICS102: Classes 2 3

- Overloading

Overloading is when two or more methods in the same
class have the same method name

To be valid, any two definitions of the method name
must have different signatures

A signature consists of the name of a method together
with its parameter list

Differing signatures must have different numbers
and/or types of parameters

March 23, 2008 ICS102: Classes 2 4

-- Overloading and Automatic Type Conversion

If Java cannot find a method signature that exactly matches
a method invocation, it will try to use automatic type
conversion

The interaction of overloading and automatic type
conversion can have unintended results

In some cases of overloading, because of automatic type
conversion, a single method invocation can be resolved in
multiple ways

Ambiguous method invocations will produce an error in
Java

March 23, 2008 ICS102: Classes 2 5

Pitfall: You Can Not Overload Based on the Type Returned

The signature of a method only includes the method
name and its parameter types

The signature does not include the type returned

Java does not permit methods with the same name and
different return types in the same class

March 23, 2008 ICS102: Classes 2 6

-- You Can Not Overload Operators in Java

Although many programming languages, such as C++, allow
you to overload operators (+, -, etc.), Java does not permit
this

You may only use a method name and ordinary method syntax
to carry out the operations you desire

March 23, 2008 ICS102: Classes 2 7

- Constructors …

A constructor is a special kind of method that is designed to
initialize the instance variables for an object:

public ClassName(anyParameters){code}

A constructor must have the same name as the class

A constructor has no type returned, not even void

Constructors are typically overloaded

March 23, 2008 ICS102: Classes 2 8

… - Constructors

A constructor is called when an object of the class is created using
new

ClassName objectName = new ClassName(anyArgs);

The name of the constructor and its parenthesized list of
arguments (if any) must follow the new operator

This is the only valid way to invoke a constructor: a
constructor cannot be invoked like an ordinary method

If a constructor is invoked again (using new), the first object is
discarded and an entirely new object is created

If you need to change the values of instance variables of the
object, use mutator methods instead

March 23, 2008 ICS102: Classes 2 9

-- You Can Invoke Another Method in a Constructor

The first action taken by a constructor is to create an object
with instance variables

Therefore, it is legal to invoke another method within the
definition of a constructor, since it has the newly created
object as its calling object

For example, mutator methods can be used to set the values of
the instance variables

It is even possible for one constructor to invoke another

March 23, 2008 ICS102: Classes 2 10

-- Include a No-Argument Constructor

If you do not include any constructors in your class, Java will
automatically create a default or no-argument constructor
that takes no arguments, performs no initializations, but
allows the object to be created

If you include even one constructor in your class, Java will
not provide this default constructor

If you include any constructors in your class, be sure to
provide your own no-argument constructor as well

March 23, 2008 ICS102: Classes 2 11

- Default Variable Initializations

Instance variables are automatically initialized in Java

boolean types are initialized to false

Other primitives are initialized to the zero of their type

Class types are initialized to null

However, it is a better practice to explicitly initialize instance
variables in a constructor

Note: Local variables are not automatically initialized

March 23, 2008 ICS102: Classes 2 12

- The methods equals and toString

Java expects certain methods, such as equals and toString, to
be in all, or almost all, classes

The purpose of equals, a boolean valued method, is to compare
two objects of the class to see if they satisfy the notion of "being
equal“

Note: You cannot use == to compare objects

public boolean equals(ClassName objectName)

The purpose of the toString method is to return a String
value that represents the data in the object

public String toString()

March 23, 2008 ICS102: Classes 2 13

- Example …

March 23, 2008 ICS102: Classes 2 14

… - Example …

March 23, 2008 ICS102: Classes 2 15

… - Example …

March 23, 2008 ICS102: Classes 2 16

… - Example …

March 23, 2008 ICS102: Classes 2 17

… - Example

March 23, 2008 ICS102: Classes 2 18

THE END

