
Boolean Expressions

March 23, 2008 ICS102: The course 1

Outline

March 23, 2008 ICS102: The course

Introduction
Java Comparison Operators
Evaluating Boolean Expressions
Pitfall: Using == with Strings
Lexicographic and Alphabetical Order
Building Boolean Expressions
Truth Tables
Short-Circuit and Complete Evaluation
Precedence and Associativity Rules
Evaluating Expressions
Rules for Evaluating Expressions

2

- Introduction

A Boolean expression is an expression that is either true or false

The simplest Boolean expressions compare the value of two
expressions

time < limit
yourScore == myScore

Note that Java uses two equal signs (==) to perform equality
testing: A single equal sign (=) is used only for assignment

March 23, 2008 ICS102: The course 3

- Java Comparison Operators

March 23, 2008 ICS102: The course 4

- Evaluating Boolean Expressions

Even though Boolean expressions are used to control branch and
loop statements, Boolean expressions can exist independently as
well

A Boolean variable can be given the value of a Boolean expression by
using an assignment statement

A Boolean expression can be evaluated in the same way that an
arithmetic expression is evaluated

The only difference is that arithmetic expressions produce a number
as a result, while Boolean expressions produce either true or false as
their result

boolean madeIt = (time < limit) && (limit < max);

March 23, 2008 ICS102: The course 5

- Pitfall: Using == with Strings

The equality comparison operator (==) can correctly test two
values of a primitive type

However, when applied to two objects such as objects of the
String class, == tests to see if they are stored in the same
memory location, not whether or not they have the same value

In order to test two strings to see if they have equal values, use
the method equals, or equalsIgnoreCase

string1.equals(string2)
string1.equalsIgnoreCase(string2)

March 23, 2008 ICS102: The course 6

- Lexicographic and Alphabetical Order

Lexicographic ordering is the same as ASCII ordering, and includes
letters, numbers, and other characters

All uppercase letters are in alphabetic order, and all lowercase
letters are in alphabetic order, but all uppercase letters come
before lowercase letters

If s1 and s2 are two variables of type String that have been
given String values, then s1.compareTo(s2) returns:

A negative number if s1 is before s2 in lexicographic ordering
zero if the two strings are equal.
A positive number if s2 comes before s1

When performing an alphabetic comparison of strings (rather than
a lexicographic comparison) that consist of a mix of lowercase and
uppercase letters, use the compareToIgnoreCase method
instead

March 23, 2008 ICS102: The course 7

- Building Boolean Expressions

When two Boolean expressions are combined using the "and" (&&)
operator, the entire expression is true provided both expressions are true

Otherwise the expression is false

When two Boolean expressions are combined using the "or" (||)
operator, the entire expression is true as long as one of the expressions is
true

The expression is false only if both expressions are false

Any Boolean expression can be negated using the ! Operator

Place the expression in parentheses and place the ! operator in front
of it

Unlike mathematical notation, strings of inequalities must be joined by &&

Use (min < result) && (result < max) rather than min <
result < max

March 23, 2008 ICS102: The course 8

- Truth Tables

March 23, 2008 ICS102: The course 9

- Short-Circuit and Complete Evaluation …

Consider x > y || x > z

The expression is evaluated left to right. If x > y is true,
then there’s no need to evaluate x > z because the
whole expression will be true whether x > z is true or
not.

This also happens when we use && operator and the
first expression is false.

To stop the evaluation once the result of the whole
expression is known is called short-circuit evaluation or
lazy evaluation

March 23, 2008 ICS102: The course 10

… - Short-Circuit and Complete Evaluation

What would happen if the short-circuit evaluation is not done for the
following expression?

kids != 0 && toys/kids >= 2

There are times when using short-circuit evaluation can prevent
a runtime error

Sometimes it is preferable to always evaluate both expressions, i.e.,
request complete evaluation

In this case, use the & and | operators instead of && and ||

March 23, 2008 ICS102: The course 11

- Precedence and Associativity Rules …

Boolean and arithmetic expressions need not be fully
parenthesized

If some or all of the parentheses are omitted, Java will follow
precedence and associativity rules (summarized in the following
table) to determine the order of operations

If one operator occurs higher in the table than another, it has
higher precedence, and is grouped with its operands before the
operator of lower precedence

If two operators have the same precedence, then associativity
rules determine which is grouped first

March 23, 2008 ICS102: The course 12

… - Precedence and Associativity Rules

March 23, 2008 ICS102: The course 13

- Evaluating Expressions

In general, parentheses in an expression help to document the
programmer's intent

Instead of relying on precedence and associativity rules, it is
best to include most parentheses, except where the intended
meaning is obvious

Binding: The association of operands with their operators

A fully parenthesized expression accomplishes binding for all
the operators in an expression

Side Effects: When, in addition to returning a value, an expression
changes something, such as the value of a variable

The assignment, increment, and decrement operators all
produce side effects

March 23, 2008 ICS102: The course 14

- Rules for Evaluating Expressions

Perform binding

Determine the equivalent fully parenthesized expression using the
precedence and associativity rules

Proceeding left to right, evaluate whatever subexpressions can be
immediately evaluated

These subexpressions will be operands or method arguments, e.g.,
numeric constants or variables

Evaluate each outer operation and method invocation as soon as all of
its operands (i.e., arguments) have been evaluated

March 23, 2008 ICS102: The course 15

THE END

March 23, 2008 ICS102: The course 16

