Chapter 9: Project Analysis

6.

	Base Case	Best Case	Worst Case
Price	$¥ 5,000$ per unit	$¥ 5,500$ per unit	$¥ 4,500$ per unit
Variable cost	$¥ 3,000$ per unit	$¥ 2,700$ per unit	$¥ 3,300$ per unit
Fixed cost	$¥ 30$ mil	$¥ 27$ mil	$¥ 33$ mil
Sales	30,000 units	33,000 units	27,000 units
Revenue $(\mathrm{P} * \mathrm{Q})$	$¥ 150 \mathrm{mil}$	$¥ 181.5 \mathrm{mil}$	$¥ 135 \mathrm{mil}$
Variable $(\mathrm{V} * \mathrm{Q})$	$¥ 90 \mathrm{mil}$	$¥ 89.1 \mathrm{mil}$	$¥ 89.1 \mathrm{mil}$

Depreciation expense $=¥ 180$ million $/ 10$ years $=¥ 18$ million per year
Cash flow $=($ Revenue - Fixed cost - Variable cost - Depreciation $)(1-T)+$ Depreciation

Best-case CF $=(\not ¥ 181.5 \mathrm{mil}-¥ 27 \mathrm{mil}-¥ 89.1 \mathrm{mil}-¥ 18 \mathrm{mil})(1-0.35)+¥ 18 \mathrm{mil}=¥ 48.81 \mathrm{mil}$
Worst-case CF $=(¥ 135 \mathrm{mil}-¥ 33 \mathrm{mil}-¥ 89.1 \mathrm{mil}-¥ 18 \mathrm{mil})(1-0.35)+¥ 18 \mathrm{mil}=¥ 5.19 \mathrm{mil}$

NPV $=$ PV of Future CFs (12\% and 10 years) - NINV
$12 \%, 10$-Year Annuity factor $=\left[\frac{1}{0.12}-\frac{1}{0.12 \times(1.12)^{10}}\right]=5.65022$
Best-case NPV $=(5.65022 \times ¥ 48,810,000)-¥ 180,000,000=¥ 95,787,238$
Worst-case NPV $=(5.65022 \times ¥ 5,910,000)-¥ 180,000,000=-¥ 146,607,200$
8. a. $\operatorname{EVA}=$ EBIT $(1-T)+$ Depreciation - Annual cost of capital

Annual cost of capital $=$ annuity of the $(N I N V=M \$ 900)$ at 14% and $\mathrm{N}=$ infinity
Annual cost of capital $=(\mathrm{M} \$ 900 \times 0.14)=\mathrm{M} \$ 126$
$E V A=[(\mathrm{M} \$ 175-\mathrm{M} \$ 40-\mathrm{M} \$ 18)(1-0.1)]+\mathrm{M} \$ 18-\mathrm{M} \$ 126=-\mathrm{M} \$ 2.7$
The facility has not reached break-even in terms of EVA.
b. $\quad \mathrm{DOL}=1+\frac{\text { fixed costs (including depreciation) }}{E B I T}=1+\frac{\mathrm{M} \$ 58 \text { million }}{\mathrm{M} \$ 117 \text { million }}=1.50$
9.

Price $=\$ 100$ per diamond
Variable cost $=\$ 40$ per diamond
Fixed Cost $=\$ 200,000$
Machinery Cost $=\$ 1000,000$
Life of project $=10$ years
Discount rate $=12 \%$
Tax rate $=35 \%$
a. Accounting Break-even Sales $=$ Fixed Costs Including Depreciation [1 - (Var. Cost / Sales]

Depreciation Expenses $=\$ 1000,000 / 10$ years $=\$ 100,000$
Accounting Break-even Sales $=\frac{\$ 200,000+\$ 100,000}{[1-(\$ 40 / \$ 100]}=\$ 500,000$

Accounting Break-even sales in terms of quantity $=\$ 500,000 / \$ 100=5,000$ The firm must sell 5,000 diamonds annually.
b.

```
Econ Break-even Sales \(=(\) Fixed Costs Including Dep \()(1-T)+\) Annual cost of capital - Dep
(1-T)(1-(Var. Cost / Sales))
```

Annual Cost of Capital $=$ annuity of the $(\mathrm{NINV}=\$ 1 \mathrm{mil})$ at 12% and $\mathrm{N}=10$
$12 \%, 10$-Year Annuity factor $=\left[\frac{1}{0.12}-\frac{1}{0.12 \times(1.12)^{10}}\right]=5.65022$
Annual Cost of Capital $=\$ 1000,000 / 5.65022=\$ 176,984.26$
Econ Break-even Sales $=(\$ 200,000+\$ 100,000)(1-0.35)+\$ 176,984.26-\$ 100,000$
(1-0.35) [1-(\$40 / \$100]
$=\$ 697,395.54$

Economic Break-even sales in terms of quantity $=\$ 697,395.54 / \$ 100=6,974$
The firm must sell 6,974 diamonds annually.
10. a. The accounting break-even point would increase because the depreciation charge will be higher, thereby reducing net profit.
b. The economic break-even point would decrease because the present value of the depreciation tax shield will be higher when all depreciation charges can be taken in the first five years.
11. The accounting break-even point would be unaffected since taxes paid are zero when pretax profit is zero, regardless of the tax rate. The economic break-even point would increase since the after-tax cash flow corresponding to any level of sales falls when the tax rate increases.
13. Cosmos India's investment (Capital) is:

R 45 million + R300 million + R200 million $=$ R 545 million

Cosmos India's cost of capital $=15 \%$

Cosmos India's Earnings $=$ R40 million

Therefore, EVA = Earnings - Annual cost of capital
$=\mathrm{R} 40$ million $-(\mathrm{R} 545$ million $\times 0.15)=-\mathrm{R} 41.75$ million
14.

Price $=\$ 80$ per keepsake
Variable cost $=\$ 60$ per keepsake
Fixed Cost $=\$ 1,000$
NINV $=\$ 3000$
Life of project $=5$ years
Discount rate $=10 \%$

Depreciation Expenses $=\$ 3000 / 5$ years $=\$ 600$
Annual Cost of Capital = annuity of the (NINV = \$3000) at $\mathbf{1 0 \%}$ and $\mathrm{N}=5$
The 10%, 5 -year annuity factor is: $\left[\frac{1}{0.10}-\frac{1}{0.10 \times(1.10)^{5}}\right]=3.79079$
Annual Cost of Capital $=\$ 3000 / 3.79079=\$ 791.39$

15. $\mathrm{DOL}=1+\frac{\text { fixed costs (including depreciation) }}{E B I T}$
a. EBIT $=$ Revenues - variable costs - fixed costs - depreciation

$$
=\$ 7,000-\$ 5,250-\$ 1,000-\$ 600=\$ 150
$$

$$
\mathrm{DOL}=1+\frac{\$ 1,600}{\$ 150}=11.67
$$

b. \quad EBIT $=$ Revenues - variable costs - fixed costs - depreciation

$$
=\$ 12,000-\$ 9,000-\$ 1,000-\$ 600=\$ 1,400
$$

$$
\mathrm{DOL}=1+\frac{\$ 1,600}{\$ 1,400}=2.14
$$

c. DOL is higher when profits are lower because a $\$ 1$ change in sales leads to a greater percentage change in profits.
21. a. EBIT $=$ Revenue - variable costs - fixed costs - depreciation $=$

$$
=\$ 6,000-\$ 4,000-\$ 1,000-\$ 500=\$ 500
$$

If sales increase by $\$ 600$, expenses will increase by $\$ 400$, and pretax profits will increase by $\$ 200$, an increase of 40%.
b. $\quad \mathrm{DOL}=1+\frac{\text { fixed costs (including depreciation) }}{E B I T}=1+\frac{\$ 1,500}{\$ 500}=4$
c. Percentage change in profits $=$ DOL \times percentage change in sales $=4 \times 10 \%=40 \%$

