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Chapter 2 

Fundamentals 

 

The Fourier transform (FT) 

 Consider a mono-frequency sinusoidal function, g(t), given by: 

g(t) = |A0| cos(f0 t - 0).                                                (2.1) 

  g(t) can be completely described in terms of the following parameters: 

 The peak amplitude |A0|, which is the highest amplitude of g(t). 

 The frequency f0, which is the number of cycles per second. 

 The phase 0, which is a time-shift applied to g(t) with respect to t = 0. 

 A time-dependent periodic signal, h(t) with a fundamental (dominant) period T0, can 

be analyzed to an infinite series of sinusoids, each having its own peak-amplitude, 

frequency, and phase; using the Fourier series: 
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where An, fn, and n are the peak amplitude, frequency, and phase of the nth sinusoidal 

component and f0 = 1/T0 is the fundamental (dominant) frequency of h(t). (Examples 

1 and 2). 

 We use the forward Fourier transform to compute the peak amplitude An and phase n 

at every frequency fn. 

 The forward Fourier transform H(f) of the time-function h(t) is given by: 
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 H(f) is generally a complex function that can be represented as: 
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 ,                           (2.4) 

where Hr(f), Hi(f), |H(f)|, and h(f) are the real part, imaginary part, amplitude 

spectrum, and phase spectrum of H(f), respectively. 

 Practically, when we carry out the forward Fourier transform, it returns the amplitude 

spectrum |H(f)| and phase spectrum h(f) as functions of frequency f. 

 Conversely, given |H(f)| and h(f)we can synthesize h(t) using the inverse Fourier 

transform: 

 




 dfefHth fti 2)()( ,    (2.5) 

where H(f) is calculated from |H(f)| and h(f) using equation (2.4). 

 The algorithm used commonly to calculate the Fourier transform numerically is the 

fast Fourier transform (FFT). 

 The FFT works fast only if the length (i.e., number of samples) of h(t) is a 

power of 2 (i.e., 2, 4, 8, …).   

 Zero right-padding is usually used for other lengths make them powers of 2. 

For example, a 100-sample function can be extended by adding 28 zeros after 

its last sample to make its length = 128 = 27 samples. 

http://en.wikipedia.org/wiki/Fast_Fourier_transform
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 The Fourier transform will transform any function p(a) from its domain (a) to a 

function P(b) in another domain (b) provided that: b = 1/a (e.g., time to frequency). 

 In this course, we will denote a Fourier transform pair as: h(t)  |H(f)| and we will 

only calculate the amplitude spectrum of the function.  The phase spectrum will only 

be calculated if needed. 

 More Internet resources are on: https://en.wikipedia.org/wiki/Fourier_transform. 

 

The impulse (delta) function 

 The impulse function (t) is defined practically as: 
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 (t) can be thought of as a function that has a very large magnitude at t = 0 and 

infinitesimally small duration such that the area under the curve is one. 

 For sampling purposes, (t) can be treated as a function that has a magnitude of 

one at t = 0 and zero elsewhere (Figure, Wikipedia, 2013). 

 Generally, for constant k and t0, the function k (t-t0) has a magnitude of k at t = t0 

and zero elsewhere. 

 The most desirable property of (t) is its FT: (t)  1, - < f < .  That is, the FT 

of (t) is constant for all frequencies (Figure, www.physforum.com, 2013). 

 Another function that is related to (t) is the sampling (Dirac) function D(t) given 

as: 
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      where t is the sampling interval and N is the number of samples (Figure,  

Wikipedia, 2013). 

 When D(t) is multiplied by a continuous function, it extracts the function values at 

intervals of t and discards all other values. This is used for sampling or analog-to-

digital (A/D) conversion. 

 More Internet resources are on: https://en.wikipedia.org/wiki/Dirac_delta_function. 

 

The sinc function 

 The sinc function is defined as: 
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where f0 is the frequency of the sine function. 

 The sinc(t) function is basically a mono-frequency sinusoidal function scaled by its 

own time. 

 Again, the most desirable property of sinc(t) is its FT: 
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That is, the FT of sinc(t) has a magnitude of one for frequencies in the interval (-f0/2, 

+f0/2) and zero elsewhere.  It is a square (boxcar) function (Figure, 

www.physforum.com, 2013). 

 The sinc(t) function is commonly used in the frequency domain for filtering (i.e., 

keeping frequencies in an interval (f1, f2) and discarding frequencies outside this 

range) as we will discuss in frequency filtering. 

http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/DiracComb.jpg
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 More Internet resources are on: https://en.wikipedia.org/wiki/Sinc_function. 

 

Convolution 

 The convolution of two time-dependent functions x(t) and h(t) yields the time-

dependent function y(t) given by: 






  dthxthtxty )()()(*)()( ,                               (2.8) 

where * denotes the convolution operation. 

 See these figures that explain the meaning of equation 2.8: Ex1, Ex2; Brigham, 

1988). 

 To convolve two sampled functions x(t) and h(t), we: 

1. Fold h(t) (i.e., reverse the order of its samples). 

2. Shift the folded h(t) all the way to the left until its last sample overlaps with the 

first sample of x(t). Note that this step is not necessary for h(t) that starts at t = 0. 

3. Multiply the first samples of x(t) and h(t). This is the convolution value at this 

shift.  

4. Shift the shifted and folded h(t) one sample to the right. 

5. Multiply overlapping samples of x(t) and the shifted and folded h(t) and add the 

result. This is the convolution value at this new shift.  

6. Repeat steps 4-5 until there is no more overlapping samples of x(t) and the shifted 

and folded h(t). 

 For sampled functions x(t) and h(t) that have number of samples Nx and Nh, 

respectively, the convolution y(t) has a number of samples Ny given by: 

Ny = Nx + Nh – 1.                                                 (2.9) 

https://en.wikipedia.org/wiki/Sinc_function
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file52.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file53.pdf
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 The convolution of a function x(t) with (t – t0) is evaluated by simply shifting x(t) so 

that its vertical axis is positioned at t = t0.  That is: x(t) * (t – t0) = x(t – t0).  

Examples (Ex1, Ex2; Brigham, 1988). 

 The convolution theorem states that convolution of two functions in the time domain 

is equivalent to multiplying their Fourier transforms in the frequency domain:  

y(t) = x(t) * h(t)  Y(f) = X(f) H(f),                                (2.10) 

where: Y(f) = |Y(f)| eiyf, |Y(f)| and yf are amplitude and phase spectra of y(t). 

 |Y(f)| = |X(f)| |H(f)|, |X(f)| and |H(f)| are amplitude spectra of x(t) and h(t). 

 yfxfhfxfandhf are phase spectra of x(t) and h(t) (Ex1, Ex2; 

Brigham, 1988). 

 The inverse of the convolution theorem is also true (Example; Brigham, 1988): 

x(t) h(t)  X(f) * H(f).                                     (2.11) 

 Convolution is commutative. That is: x(t) * h(t) = h(t) * x(t).  This means that it 

doesn’t matter if you fold and shift x(t) or h(t).  Examples (Ex1, Ex2; Brigham, 

1988). 

 It is usually faster to perform convolution in the frequency domain for functions of 

long durations (i.e., Nx & Nh > 32) if the FFT is used. 

 Numerical example of convolution. 

 More Internet resources are on: https://en.wikipedia.org/wiki/Convolution. 

 

Correlation 

 The correlation of two time-dependent functions x(t) and h(t) yields the time-

dependent function y(t) given by: 

http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file57.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file58.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file62.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file63.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file64.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file55.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file78.pdf
https://en.wikipedia.org/wiki/Convolution
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where  denotes the correlation operation.  Examples (Ex1, Ex2; Brigham, 1988). 

 To correlate two sampled functions x(t) and h(t), we: 

1. Shift h(t) all the way to the left until its last sample overlaps with the first sample 

of x(t). 

2. Multiply x(t) first sample with h(t) last sample and add the result. This is the 

correlation value at this shift.  

3. Shift the shifted h(t) one sample to the right. 

4. Multiply overlapping samples of x(t) and the shifted h(t) and add the result. This 

is the convolution value at this new shift.  

5. Repeat steps 3-4 until there is no more overlapping samples of x(t) and the shifted 

h(t). 

 For sampled functions x(t) and h(t) that have number of samples Nx and Nh, 

respectively, the correlation y(t) has a number of samples Ny given by: 

Ny = Nx + Nh – 1.                                                 (2.13) 

 The correlation of a function with another different function is called crosscorrelation 

while the correlation of a function with itself is called autocorrelation. 

 Applying the convolution theorem on the correlation yields: 

y(t) = x(t)  h(t) = x(t) * h(-t)  Y(f) = X(f) H*(f)                       (2.14) 

where H*(f) = Hr(f) – i Hi(f) = |H(f)|e-ih(f) is the complex conjugate of H(f) = Hr(f) + i 

Hi(f) = |H(f)|eih(f); Y(f) = |Y(f)| eiyf; |Y(f)| = |X(f)| |H(f)|; yfxfhf 

http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file67.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file66.pdf
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 Note that correlation is NOT commutative. That is: x(t)  h(t) ≠ h(t)  x(t).  This 

means that, given x(t)  h(t), you must shift h(t). 

 Numerical examples of cross-correlation and auto-correlation. 

 More Internet resources are on: https://en.wikipedia.org/wiki/Cross-correlation and 

https://en.wikipedia.org/wiki/Autocorrelation. 

 

The z-transform 

 The z-transform of a sampled function x(t) = (x-M, x-M+1, …, x-1, x0, x1, …, xN-1, xN) is 

defined as: 
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 Examples: 

 Given x(t) = x(t=0,t=1,t=2,t=3) = (1, -1/2, 2, -1), its X(z) = 1 – (½)z + 2z2 – z3. 

 Given x(t) = x(t=-1,t=0,t=1,t=2) = (3,-2, 4, -1), its X(z) = 3/z-2+4z–z2. 

 In this course, we will assume that time functions start at t=0 unless specified. 

 The inverse z-transform is found by collecting the coefficients of the z-transform 

polynomial. 

 For example, the inverse z-transform of Y(z) = 2 + z - 4z2 + z3 is y(t) = (2, 1, -4, 1). 

 Another example of Z-transform. 

 The convolution theorem applies to the z-transform: x(t) * h(t) = X(z) H(z). 

 The z-transform is related to the Fourier transform through this relation: 

      (2.15b) 

 For example, for x(t)=(2,-1): 

https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Autocorrelation
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𝑋(𝑧) = 2 − 𝑧

𝑋(𝑓) = 2 − 𝑒𝑖2𝜋𝑓

𝑋(𝑓) = 2 − cos(2𝜋𝑓) − 𝑖 𝑠𝑖𝑛(2𝜋𝑓)

∴ 𝑋𝑟(𝑓) = 2 − cos(2𝜋𝑓) 𝑎𝑛𝑑 𝑋𝑖(𝑓) = − sin(2𝜋𝑓)

|𝑋(𝑓)| = √[2 − 𝑐𝑜𝑠(2𝜋𝑓)]2 + [𝑠𝑖𝑛(2𝜋𝑓)]2

∅𝑥(𝑓) = tan−1{[2 − cos(2𝜋𝑓)]/[− sin(2𝜋𝑓)]}

.  (2.15c) 

 More Internet resources are on: https://en.wikipedia.org/wiki/Z-transform. 

 

Phase considerations 

 A wavelet is a time-domain signal that has a start and end times. 

 A minimum-phase wavelet has its energy concentrated at its start time. 

 A maximum-phase wavelet has its energy concentrated at its end time. 

 A mixed-phase wavelet has its energy concentrated (or distributed) between its start 

and end times. 

 A zero-phase wavelet is a non-realizable wavelet that starts from negative time and 

ends at positive time with its energy symmetric about t = 0.  A non-realizable wavelet 

is one that cannot be produced directly by real sources. 

 Examples. 

 The wavelet shape and position with respect to t = 0 can be modified by changing the 

phase spectrum. (Example; Yilmaz, 2001) 

 For processing, it is desirable to have a minimum-phase wavelet because 

deconvolution requires it; but the wavelet peak will be shifted further in time from the 

actual reflection time. 

https://en.wikipedia.org/wiki/Z-transform
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/Ch2-Wavelets.doc
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file38-b.jpg
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 For interpretation, it is desirable to have a zero-phase wavelet since the wavelet peak 

will occur exactly at the actual reflection time. 

 It is common to do processing using minimum-phase wavelets and transform them to 

zero-phase wavelets before handing the data to the interpreter. 

 

Frequency filtering 

 Frequency filtering of a function x(t) means that we apply an operator g(t) to the 

function so that the output is a function y(t) that contains only frequencies that lie 

within our desired frequency range [fi, ff]. 

 Filtering can be done in the time-domain by convolving x(t) with g(t) or in the 

frequency domain by multiplying their Fourier transforms (the convolution theorem). 

 Since we want to change only the amplitude spectrum of x(t), we must select a zero-

phase g(t). 

 The desired amplitude spectrum of G(f) is a square function that has a value of one in 

the range [fi, ff], and zero elsewhere. 

 Because the FT exists only for continuous functions and G(f) is discontinuous at fi 

and ff, we must multiply G(f) by a taper (smoothing) function S(f) to eliminate this 

problem.  Examples of taper functions include Hanning and Hamming. 

 Furthermore, the sharp slopes in G(f) at fi and ff causes the output y(t) and Y(f) to be 

oscillatory because of Gibbs phenomenon.  Therefore, relatively gentle slopes are 

used at the edges of the square function. (Example; Yilmaz, 2001) 

 With these modifications, the final shape of G(f) will be a trapezoid with smooth 

edges. 

http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/Hm-Hn.pdf
http://mathworld.wolfram.com/GibbsPhenomenon.html
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file45.gif
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 The trapezoid G(f) will have a gentle slope from fi – fi to fi, one between fi and ff, a 

gentle slope from ff to ff + ff, and zero elsewhere. 

 The slope at the high-frequency end should be gentler than that at the low-frequency 

end (i. e., ff > fi) because Gibbs phenomenon increases slightly with frequency.  

 Shifting the band-pass range [fi, ff] to higher frequencies will not improve the vertical 

resolution of the whole seismic trace.  Instead, we have to do this by increasing the 

width of the pass-band frequency filter. (Examples 1 and 2; Yilmaz, 2001) 

 Because of absorption of high frequencies by the Earth, a constant pass-band filter 

might not be sufficient and a time-variant filter (TVF) might be needed. 

 TVF means that we segment the seismic record to 3 or 4 segments and design a filter 

for each segment separately. 

 Real-data and numerical examples. 

 More internet resources on tapering functions. 

 

Frequency aliasing 

 When sampling a continuous time-dependent signal, we must choose a sampling rate 

(sampling interval), t. 

 When we sample a function using a sampling rate t, the highest frequency that can 

be retrieved is the Nyquist frequency: fN = 1/(2t). 

 Common sampling rates used in seismic exploration are: 2, 4, and 8 ms. The 

corresponding Nyquist frequencies are: 250, 125, and 62.5 Hz, respectively. 

(Example; Yilmaz, 2001) 

http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file46-b.gif
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file44.gif
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/Ch2-Freq-Filtering.doc
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/Filter-Hn.xls
http://mathworld.wolfram.com/ApodizationFunction.html
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/31.doc
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 Sampling in the time domain means that we multiply the continuous function h(t) by 

the time sampling function D(t), which is a series of impulses spaced at t with each 

impulse having an amplitude of one. 

 Using the convolution theorem, this means that we convolve the amplitude spectra of 

h(t) and D(t) namely |H(f)| and D(f), where D(f) is also a series of impulses spaced at 

f = 1/t = 2fN with each impulse having an amplitude of 1/t. 

 Convolution of |H(f)| and D(f) will replicate |H(f)| at an interval of 2fN. 

 |H(f)| naturally has a maximum usable frequency fh beyond which there is no signal. 

 If t is small such that fN > fh; then, |H(f)| replicas will be totally separated and both 

fN and fh can be retrieved.  This is the case with no frequency aliasing. (Examples 1 

and 2; Brigham, 1988) 

 If t is large such that fN < fh; then, |H(f)| replicas will interfere and neither fN nor fh 

can be retrieved.  This is the case with frequency aliasing. (Example; Brigham, 

1988) 

 When frequency aliasing occurs, the maximum retrievable frequency is the alias 

frequency given by: fa = |2fN – fh|. (Examples Ex2, Ex3; Yilmaz, 2001) 

 For example, if a Vibroseis signal with a frequency range of 10-160 Hz was sampled 

at a sampling rate of 4 ms; then: 

o fN = 1/(2*0.004) = 125 Hz 

o fh = 160 Hz. 

o Since fN < fh, aliasing will occur. 

o The alias frequency is: fa = |2125 – 160| = 90 Hz. 

http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file81.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file84.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file82.pdf
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file32.jpg
http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/file33.gif
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o This means that we lost all the frequencies above 90 Hz.  Note that we could not 

retrieve neither fN nor fh because of aliasing. 

 On the other hand, if we sampled the same signal at 2 ms sampling interval, fN will be 

250 Hz while fh is still 160 Hz.  Since fN > fh, no aliasing will occur and we can easily 

retrieve both fh and fN. 

 Practically, we want to sample the data such that we avoid aliasing.  In the field, we 

use an anti-aliasing analog filter before sampling to insure that fN > fh.  The anti-

aliasing filter makes fh of the analog (continuous) data equal to fN/2 or 3fN/4. 

 

Gain Applications 

 Example. 

 Gain is a time-variant scaling of the amplitudes of the data. 

 Gain is done to account for spherical divergence and absorption effects. 

 There are two main types of gain methods: 

(1) Physical gain methods, which depend on subsurface velocities. 

(2) Display gain methods, which are done purely for display purposes without 

requiring velocity information. 

(1) Physical Gain Methods: 

(a) Single layer: 

 A seismic source in a single homogeneous and isotropic layer produces a 

spherical wavefront whose energy decays as 1/r2 and amplitude as 1/r, where r 

is the distance from the source. 

http://faculty.kfupm.edu.sa/ES/ashuhail/Undergraduate/GEOP320/Notes/Ch2/Gain-Example.pdf
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 Therefore, in order to restore the amplitudes to their original values at the 

source (A0), we have to multiply them by the distance traveled by the wave: 

  A0 = A(r).r = A(t).V.t,   (2.16a) 

where A(r) = A(t) is the amplitude at a distance r (and time t) from the source 

and V is the layer velocity. 

 However, we usually do not know the distance traveled by the wave in the 

subsurface nor the medium velocity at this early stage of processing. 

Therefore, an approximation of the gained amplitude is:     

A0 = A(t).t,    (2.16b) 

where A(t) is the amplitude at time t before gain application. 

(b) Multiple layers: 

 Refraction (ray bending) at layer interfaces increases the distance traveled by 

the ray to the same point, therefore increasing the amplitude loss due to 

geometrical spreading. 

 If we know the RMS velocities (Vrms); then, the gained amplitude is: 

A0 = A(t).[Vrms
2(t).t]/(V1

2.t1),                                   (2.16c) 

      where Vrms(t) is the RMS velocity at time t and V1 and t1 are the velocity and  

      time at the bottom of the first layer. 

 If we do not know the velocities; then, the gained amplitude can be 

approximated as: 

A0 = A(t).tm,                                               (2.16d) 

      where m is a number between 1 and 2 found by trial and error until amplitudes  

are balanced equally at all times. 
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 If absorption effects are considerable, an exponential correction can be used such 

that the gained amplitude due to absorption only is: 

AA0 = A(t).e( t),                                                      (2.17) 

where  = 0.01 – 1 sec-1. 

 Claerbout (1985) suggests using m = 2 in equation (2.16d) to account for both 

spherical divergence and absorption. 

 

 

(2) Display Gain Methods: 

Automatic Gain Control (AGC) 

The most common type of AGC is the instantaneous AGC performed as follows: 

(1) The absolute mean (  





1

/1
Nk

ki

k AiNA ) value of trace amplitudes within a 

time window containing samples k to k+N-1 is computed, where 

k=1,…,L-N+1, where L is number of samples in the trace. 

(2) The trace samples within the time window starting with the kth sample and 

ending with the (k+N)th sample are divided by the absolute mean 

amplitude value in that window. 

(3) The time window is shifted down by one sample and steps (1)-(2) are 

repeated until sample L-N+1 is reached. 

 In practice, 200 – 500 ms AGC time windows are commonly chosen. 

 This method attempts to scale the amplitudes in the trace to 1.0 producing 

undesirable artifacts at shallow times (Figure). 

 AGC should only be used to display the data.   

Before%20AGC-After%20AGC.pdf
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Appendix A 

Numerical convolution, cross-, and auto-correlations 

 

x(t) = (2, 1, -2) 

h(t) = (1, -1) 

Convolution 

y(t) = x(t) * h(t) = (2, -1, -3, 2) = h(t) * x(t)    (Prove!) 

 2 1 -2 

-1 1    y(0) = (2)(1) = 2 

 -1 1   y(1) = (2)(-1) + (1)(1) = -2 + 1 = -1 

  -1 1  y(2) = (1)(-1) + (-2)(1) = -1 - 2 = -3 

   -1 1 y(3) = (-2)(-1) = 2 

Back 

 

Cross-correlation  

y(t) = x(t)  h(t) = (-2, 1, 3, -2)  h(t)  x(t)    (Prove!) 

 2 1 -2 

1 -1    y(-1) = (2)(-1) = -2 

 1 -1   y(0) = (2)(1) + (1)(-1) = 2 - 1 = 1 

  1 -1  y(1) = (1)(1) + (-2)(-1) = 1 + 2 = 3 

   1 -1 y(2) = (-2)(1) = -2 

Back 

 



 17 

Auto-correlation  

y(t) = x(t)  x(t) = (-4, 0, 9, 0, -4)  [Note that: y(-t) = y(t)] 

  2 1 -2 

2 1 -2    y(-2) = (2)(-2) = -4 

 2 1 -2   y(-1) = (2)(1) + (1)(-2) = 2 - 2 = 0 

  2 1 -2           y(0) = (2)(2) + (1)(1) + (-2)(-2)= 4 + 1 + 4=9 

   2 1 -2 y(1) = (1)(2) + (-2)(1) = 2 - 2 = 0 

    2 1 -2 y(2) = (-2)(2) = -4 

Back 

 

Z-Transform 

X(z) = (2)z0 + (1)z1 + (-2)z2 = 2 + z - 2 z2 

Y(z) = (1)z0 + (-1)z1 = 1 – z 

Back 

 

 

 

 

 

 

 

 

 


