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A simplification of the Zoeppritz equations 

R. T. Shuey* 

ABSTRACT 

The compressional wave reflection coefficient R(B) 
given by the Zoeppritz equations is simplified to the 
following: 

Ao 
R(B) = R, + A,R, + (1 _ o)z sin’ 8 1 

+ 5 9 (tan’ 8 - sin’ 0). 
P 

The first term gives the amplitude at normal incidence 
(0 = 0), the second term characterizes R(O) at intermedi- 
ate angles, and the third term describes the approach to 
critical angle. The coefficient of the second term is that 
combination of elastic properties which can be deter- 
mined by analyzing the offset dependence of event am- 
plitude in conventional multichannel reflection data. If 
the event amplitude is normalized to its value for 
normal incidence, then the quantity determined is 

1 A0 
A=A0+(1-_ 

A, specifies the normal, gradual decrease of amplitude 
with offset; its value is constrained well enough that the 
main information conveyed is do/R,, where Ao is the 
contrast in Poisson’s ratio at the reflecting interface and 
R, is the amplitude at normal incidence. This simplified 
formula for R(B) accounts for all of the relations be- 
tween R(8) and elastic properties first described by Koe- 
foed in 1955. 

ences about the elastic parameters from observation of reflec- 
tion amplitude as a function of angle. 

This problem was fairly definitively investigated in the pio- 
neering work of Koefoed (1955). His method was laborious 
computation of reflection coefficient versus angle out to 30 
degrees for 17 different sets of elastic properties. Koefoed took 
the three elastic parameters for each medium to be longitudinal 
velocity VP density p, and Poisson’s ratio o. He gave his con- 
clusions as follows. 

(a) 

(b) 

(4 

(4 

(4 

‘When the underlying medium has the greater longi- 
tudinal velocity and other relevant properties of the 
two strata are equal to each other, an increase of 
Poisson’s ratio for the underlying medium causes an 
increase of the reflection coefficient at the larger 
angles of incidence. 
When, in the above case, Poisson’s ratio for the inci- 
dent medium is increased, the reflection coefficient at 
the larger angles of incidence is thereby decreased. 
When, in the above case, Poisson’s ratios for both 
media are increased and kept equal to each other, the 
reflection coefficient at the larger angles of incidence 
is thereby increased. 
The effect mentioned in (a) becomes more pro- 
nounced as the velocity contrast becomes smaller. 
Interchange of the incident and the underlying 
medium affects the shape of the curves only slightly, 
at least up to values of the angle of incidence of about 
30”.’ 

INTRODUCTION 

Recently the dependence of seismic reflection amplitude 
upon the offset between source and receiver has been intensely 
investigated (Ostrander, 1984; Sherwood et al., 1983; Gas- 
saway and Richgels, 1983). At the core of the matter are the 
Zoeppritz equations, which give the reflection and transmission 
coefficients for plane waves as a function of angle of incidence 
and six independent elastic parameters, three on each side of 
the reflecting interface. The inverse problem is to make infer- 

The precise meaning of some of these five rules may be 
unclear without Koefoed’s figures or subsequent similar para- 
metric studies. I give my understanding of each rule in a later 
section of this paper. 

While various authors have presented approximations to the 
Zoeppritz equations (e.g., Bortfeld, 1961), to my knowledge 
they have not been simpliticd to the point where both (I) 
Koefoed’s rules are displayed analytically and (2) the inverse 
problem--elastic properties from curve shape-is done analyti- 
cally. This paper presents such a simplification. The work was 
done before I became aware of Koefoed’s paper. 
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DERIVATION 

Provided the percentage changes in elastic properties are 
small, the f-wave reflection amplitude R(O) is given approxi- 
mately by Aki and Richards (1980, p. 153) as 

R(B) = ; 1 _ 4 3 sin28 ! 9 + -- AVp sec2 0 - 4V1 Av, 

“; P 2 v, “; 
sin2flv. 

s 

(1) 

The elastic properties in equation (I) are related as follows to 
those on each side of the inter face : 

AVp = VP2 - Vp,L 
(2) 

VP2 + Vpl l/2> 

K2 - v,,)? 
(3) 

v,, + v,,)/2, 

VP = 

Av,= 

v,= 

and (4) 

P = (P2 + Pi)/23 

where the incident and reflected waves are on side 1 and the 
transmitted wave is on side 2. The angle 0 is the average of 
incidence and transmission angles, 

0 = (Cl, + 0,)/2. (5) 

These two angles are related by Snell’s law, 

9 sin 0, 
P= v, =- Vz 

(6) 

I modified equation (I) by eliminating the properties V,, A V, 
in favor of o, Ao. The latter are defined as above by 

ho = (02 - o,), 

and (7) 

o = (cr2 + 0,)/2 

The substitution is effected by the equation 

t-20 
“f ZZ V2 ~ 

p 2(1 - a) 

and also by the differential of this equation. This change of 
variable was motivated by the general perception [embodied in 
Koefoed’s rules (a), (b), and (c)] that Poisson’s ratio is the elastic 
property most directly related to angular dependence of reflec- 
tion coefficient. 

A further modification was to factor out R,, the amplitude at 
normal incidence. Because the practical problems in recovering 
absolute reflection amplitude seem more severe than the prob- 
lems of recovering the relative variation of reflection amplitude 
with offset, it is appropriate to consider the information content 
of the relative curve R(O)/R,. The result of these manipulations 
is 

RWR, Z= 1 + A sin’ 0 + B (tan’ 0 - sin2 O), (9) 

where 

(‘0) 

1 ho 
A=A,+p- 

(1 - 0)’ R,’ 

I - 20 
A, = 5 - 2(1 + B) I-o. 

and 

B= 
AVJV’ 

AV,/Vp + APIP’ 

(‘1) 

(‘2) 

(13) 

Equation (9) displays which combinations of elastic proper- 
ties are effective in successive ranges of angle 8. The third term 
vanishes as 04. so it does not normally contribute for 0 < 30 
degrees. However, at large angles it dominates. For consider- 
ation of absolute instead of relative amplitude, equation (9) 
should be multiplied through by R,, i.e., 

A0 
R(O)=R,+ [AoR,+- 

(1 - 0)2 1 sin’ 0 

I AVp 
+ j v (tan’ 0 - sin’ Cl). 

P 
(14) 

DISCUSSION 

Equation (14) has some similarity to the approximation of 
R(O) given in Bortfeld (1961) and discussed recently in numer- 
ous unpublished lectures by Hilterman (1983). The Bortfeld 
approximation has about the same accuracy as equation (1) or 
equation (14), but the three expressions differ in the philosophy 
of grouping terms. Equation (14) displays which combinations 
of elastic properties are effective in successive ranges of angle 8. 
Equation (1) is arranged to separate the effects of the three 
variables Ap, A V,, and AV,, The Bortfeld arrangement is de- 
signed to contrast elastic and acoustic reflection coefficients. It 
separates two terms, the first of which (fluid factor) involves 
only velocity and density and is the same as R(O) for a fluid- 
fluid contact. The linearization of this fluid factor is 

R,(8) z R, + i F tan’ 0 
” 

which corresponds to the first term and part of the third term in 
equation (14). 

Equations (9) and (14) diagonalize the relationship between 
elastic properties and R(8) in the sense that certain features are 
related to certain combinations of elastic properties without 
significant coupling between the variables. As is apparent from 
Figure 1, the dimensionless parameter A controls whether the 
amplitude initially increases (A > 0) or decreases (A < 0), while 
the dimensionless parameter B controls the sign at large angles. 
From equations (9) through (14) I perceive three quasi- 
independent connections between R(8) and elastic properties: 

(I) Normal incidence.---The magnitude R, is the average of 
fractional changes in V, and p [cf., equation (lo)]. Alternatively, 
R, is half the change in natural logarithm of impedance pVp 
since the approximation 

R 5 ’ APIG _ 1 
0 _ 

2 PVP 
j A ln (PV,) 

is also valid to first order in change of elastic properties. 

(16) 
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(2) Intermediate angles (0 c 0 < 30 degrees).-The reflec- 
tion amplitude at intermediate angles relative to that at normal 
incidence connects to the parameter A, which is the sum of two 
terms [equation (1 l)]. I argue in Appendix A that the first term 
A,, can be accurately predicted just from an approximate value 
of average Poisson’s ratio o, provided only that the parameter 
B is in its normal range. The real information in A is in the ratio 
Ao/R,. In Appendix B I consider the degenerate case R, = 0. 

(3) Wide angles.-The reflection amplitude at wide angles 
relates only to the change in velocity. At sufficiently large 
angles where the third term in equation (14) dominates the first 
two, it becomes 

R(Q) +l$t an’ 8 - sin’ 0). 
P 

(17) 

Analysis of wide-angle seismic records for velocity is a highly 
developed subject to which equation (17) probably contributes 
nothing. However, its derivation does indicate the relation to 
analysis of amplitude at intermediate angles. 

The basis of the derivation of equations (1) and (9) from the 
exact Zoeppritz equations is that the percentage change in 
elastic properties is small, i.e., AV,/V’, AV,,/V,, and Ap/p are all 
small compared to unity. For the vast majority of exploration 

FIG. 1. The four possible variations of amplitude with angle. 
Plotted are curves R(O)/R, according to equation (9) for the 
four possible combinations of A = Ifr3, B = k2. As discussed 
in Appendix A, the case B < 0 is rare. 
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Frc;. 2. Approximations in an instance with AV < 0. The elastic 
properties correspond to an actual gas sand in the Gulf of 
Mexico: VP, = 7 570 ft/s. p, = 2.15, and o, = 0.40 for the 
overlying shale and VP, = 6 400 h/s, pz = 1.95. and oz = 0.10 
for the gas sand. 
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FIG. 3. Approximations in an instance with AV > 0. The elastic 
properties on the upper side are the same as for Figure 2, while 
the underlying medium has I ;+ = 11 350 ft/s, p2 = 2.20, o2 = 
0.30. These values are approprtate to a chalk with 30 percent 
porosity. Beyond critical angle (42 degrees) the reflection coef- 
ficient becomes complex and the absolute value is shown for the 
exact solution and for equation (14). 
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FIG. 4. Parabolic approximation to R(8) for different values of 
the dimensionless parameter A [equation (1 S)]. 
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FIG. 5. Comparison of exact reflection coefficients (solid line) 
with the parabolic approximation [equation (18)] in a case of 
velocitydecrease. 

situations, in which the reflection coefficient R, does not exceed 
0.2, this is no problem. However, the derivation also assumes 
that both 8, and 8, are real and less than 90 degrees. This 
means that the approximation is good only to about 8, = 80 
degrees in the case of a velocity decrease (Figure 2) and to O1 
about 10 degrees less than critical in the case of a velocity 
increase (Figure 3). It is not necessary that As/a be small; 
indeed, it has the value 1.2 for Figure 2. 

At intermediate angles further simplifications are possible 
(Figures 2 and 3). The incident angle 8, can be used instead of 
average angle t3 in equation (14). This saves the work of calcu- 

lating transmitted angle 0, by equation (6) and then averaging 
by equation (5). The resulting curve has the right shape but rises 
too soon in the case of a velocity decrease (AF’ < 0, Figure 2) 
and too late in the case of a velocity increase (AL’ > 0, Figure 
3). The error is not significant in the intermediate angles 0 < 
0, < 30 degrees. 

A further approximation is to omit entirely the third term in 
equation (9) or equation (14). I argued above that the third term 
was unnecessary for incident angles less than 30 degrees. One 
caution is that in the case A < 0, B > 0 omission of the third 
term may lead to false prediction of a zero crossing at wide 
angles. Figures 1.3,5, and 6 all illustrate this situation. 

A final approximation is to replace sin 8, by Or, which is 
accurate for 0, < 30 degrees. The concatenation of all these 
approximations is 

R = R,( I + A@;). (18) 

Figure 4 shows this parabolic form of variation in more detail 
for a range of values of parameter A. Figures 5 and 6 compare 
the parabolic approximation to the exact solution of the Zoep- 
pritz equations for a range of Ao and both signs of AV. These 
figuresdo not include an instance with B < 0, but that is rare as 
discussed in Appendix A. 

DERIVATION OF KOEFOED’S RULES 

The five observations made numerically by Koefoed can be 
established analytically using equations (9) through (14). Equa- 
tion (14) states that an increase (decrease) of Poisson’s ratio for 
the underlying medium produces an increase (decrease) in the 
reflection coefficient at larger angles of incidence. This agrees 
with Koefoed’s rules (a) and (b) but without the qualification 
that “the underlying medium has the greater longitudinal ve- 
locity and other relevant properties of the two strata are equal 
to each other.” 

When the Poisson’s ratios for the two media are equal 
(Ao = O), then this Poisson’s ratio enters into R(B) only through 
A,. Koefoed’s rule (c) is equivalent to saying A, increases as o 
increases. The derivative of equation (I 2) is 

,_2(f +B) iA 
_p 

io (1 -cry 
(19) 

so we see rule (c) is true except for E < - I. Figure 8 illustrates 
the increase of A, with o for the normal range of B. Koefoed 
only considered the case B = 1. 

Koefocd’s rule (d) is derived from equation (11). The smaller 
is R,); the larger is the effect of a given ACJ upon A. This is 
apparently what Koefoed meant by rule(d). 

Rule (e) follows from the observation that equation (14) [or 
equation (9)] is linear in the three differences AV’ Ao, and Ap. 
Therefore R(O) simply changes sign when the two sets of elastic 
properties “1” and “2” are interchanged. Rule (e) breaks down 
at large angles when the difference between 8, and 0 [equation 
(5)] cannot be neglected. 

INVERSION FOR ELASTIC PROPERTIES 

A current problem is inversion of the reflection coefficient 
R(8) to obtain information about elastic properties (Gassaway 
and Richgels, 1983; Rosa. 1976). The diagonalization accom- 
plished in equation (9) or equation (14) can simplify this inver- 
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sion and clarify which combinations of elastic properties are 
well determined and which are poorly determined. 

Because the practical problems in recovering absolute reflec- 
tion amplitude differ from the problems of recovering the rela- 
tive variation of reflection amplitude with offset, it is appropri- 
ate to consider the information content of the relative curve 
R(O)/R,. If reflections are not recorded much past 30 degrees 
then equation (I 8) or Figure 4 could be used to extract a value 
of A from the input R(O)/R,. If wider angles are involved, then 
R(O)/R, could be fit to the trigonometric series in equation (9). 
In either case, the dimensionless parameter A is the only infor- 
mation to be extracted other than critical-angle behavior. 
Figure 7 shows that A can be transformed to AojR, provided 
very approximate information is available or hypothesized 
about average Poisson’s ratio (J and velocity/impedance ratio 
E. In brief, the single piece of information about elastic proper- 
ties available from analysis of relative change of reflection 
amplitude with offset is Ao/R,. The multidimensional, nonlin- 
ear inversion problem discussed previously (Rosa, 1976: Gas- 
saway and Richgels, 1982) is reduced to a one-dimensional 
linear problem. 

As I pointed out, R, is half the change in natural logarithm of 
impedance [equation (16)]. Thus the information AaiR, is 
equivalent to slope on a crossplot of Poisson’s ratio versus 
impedance pVp on a logarithmic scale. This could be the basis of 
a graphic procedure to relate information about R(B) to infor- 
mation about lithology. 

SUMMARY 

I took the known linearization of the P-wave reflection coef- 
ficient R(O) [equation (l)] and transformed variables from V, to 
cr to display analytically the effect of Ao, the contrast in Pois- 
son’s ratio. The result [equations (9) or (14)] was arranged into 
three terms which contribute to three distinct features of the 
R(O) curve: (1) the normal-incidence magnitude, (2) the behav- 
ior at intermediate angles of about 30 degrees, and (3) the 
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FIG. 6. As in Figure 5 but incident on the opposite side of the 
interface. 

approach to critical angle. Thus I have approximately diago- 
nalized the multivariate relationship between elastic properties 
and curve features, The coefficient for intermediate angles also 
has two terms: one term is proportional to Ao, the contrast in 
Poisson’s ratio; and the other term is A,,, which describes the 
bland decrease of R(B) in the absence of contrast in Poisson’s 
ratio. When angles approaching critical are not included, R(8) 
may be adequately approximated by a parabola [equation 
(18)]. The approximation provides an analytic basis for the 
systematics first described by Koefoed, and also for a simple 
inversion of R(0) to Ao. 
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APPENDIX A 
NO CONTRAST IN POISSON’S RATIO 

The quantity A,, given by equation (1 I), specifies the vari- 
ation of R(0) in the approximate range 0 < 0 < 30 degrees for 
the case of no contrast in Poisson’s ratio. It depends upon 
average Poisson’s ratio (J and the ratio B [equation (13)]. 
Previous investigations, by Muskat and Meres (1940) found 
1 R(0) 1 to be slowly decreasing in this case, i.e., A, is negative 
and small in magnitude. Study of equation (12) confirms this is 
usually but not always true. 

Parameter B is the ratio of the fractional change in velocity 
to the fractional change in impedance [equation (13)]. When 
the velocity change and density change have the same sign, the 
ratio B is in the range 0 < B < 1, the limit B = 0 corresponding 
to no velocity change and the limit B = 1 corresponding to no 
density change. The density-velocity correlation introduced in 
Gardner ct al. (1974) corresponds to B = 0.8. Frequency distri- 
butions (histograms) for B can be derived from well logs. Typi- 
cally they peak near B = 0.7 and have only slight tails outside 
the range 0 < B < 1. Figure A-l shows that for values of B in 
this range, A,, is more dependent on (J than on B, ranging from 
about 0.0 for very high o to -2.0 for very low CY. At the 
intermediate value (T = l/3, A, is ~ 1.0 for all values of B. 

Average Poisson’s ratio cr can be estimated from a hypothesis 
about the lithologies involved and from published laboratory 
work such as Gregory (1976). For consolidated rocks the value 
o = 0.25 has long been a standard. Unconsolidated, water- 
saturated elastics have a higher Poisson’s ratio, approaching 
0.5 for ocean-floor sediments (Hamilton. 1979). Qualitative 
knowledge of average lithology allows estimation of o with an 
uncertainty of iO.05. for instance. Then, provided B is in its 
normal range 0 < H < 1, Figure A- 1 shows A, can be estimated 
with an uncertainty of +0.4. 

AVERAGE POISSON’S RATIO ~7 

FIG;. A-l. Contours of A, [equation (12)] as a function of 
average Poisson’s ratio o and velocity/impedance ratio B. 

APPENDIX B 
REFLECTIONS WHICH VANISH AT NORMAL INCIDENCE 

This paper focuses on R(O)/R,, the PP reflection amplitude at 
intermediate angles relative to that at normal incidence. A 
separate analysis applies in the degenerate case R, = 0, i.e., PP 
reflections which vanish at normal incidence. Equation (14) for 
absolute amplitude should be used instead of equation (9) for 
relative amplitude. The first term of equation (14) vanishes in 
the degenerate case being considered, while the third is negligi- 
ble for 0 < 30 degrees. After multiplying the product A, R, 
using equations (I 0), (12), and (13), I get 

R(O) z 
AV 30-l A0 
- ~ ~ 

I/ 2(1 -a) + (I - c$ 1 sin’ 0. (B-1) 

The brackets in equation (B-l) give the combination of elastic 
properties connected to the absolute amplitude of a degenerate 
PP reflection. Converted PS reflections have the same offset 
dependence, but they might be distinguished by finding the PP 
reflection from the same interface and possibly by use of shear- 
wave detectors. 

I suggest that degenerate PP reflections are rare but not 
nonexistent. Two cases come to mind of lithologic interfaces for 
which R,, [equation (lo)] could be much smaller than the 
bracketed quantity in equation (B-l): (1) dense limestone 
against chert, e.g., in the Paleozoic of the western United States, 
and (2) salt against consolidated elastics in the deep Gulf of 
Mexico. 


