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Abstract: For circumventing the alignment requirement of line-of-sight (LOS) underwater 
wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) 
UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen 
as a figure-of-merit for link performance in this investigation, which considers the effects of 
geometries, water turbidity, and transmission wavelength. The experiments suggest that path 
loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength 
due in part to enhanced scattering utilizing 375-nm radiation. We highlighted that it is 
feasible to extend the current findings for long distance NLOS UWOC link in turbid water, 
such as harbor water. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Underwater wireless communication (UWC) is of great interest to the military, industry, and 
the scientific communities due to various applications ranging from tactical surveillance, 
pipeline and environmental monitoring to oceanographic data survey, marine archaeology, 
and search or research missions [1,2]. Yet the radio frequency (RF) communication system 
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widely utilized for the terrestrial communication can hardly be deployed underwater due to 
high seawater attenuation [3]. Acoustic communication is the commercially viable solution so 
far, due to the long propagation distance over kilometers in the water [4,5], but it is limited in 
data-rate by the low channel bandwidth underwater and the high latency [6,7]. 

Given these inherent drawbacks in RF and acoustic channels, underwater wireless optical 
communications (UWOC) turns out to be an appropriate solution for real-time high-data-rate 
communication at giga-bits-per-second over 20 meters [8–10]. Moreover, in the industry, the 
underwater transmission distance has been extended over 150 m with a data rate of 12.5 
Mbps, as demonstrated by Sonardyne’s BlueComm 200 system. Furthermore, the 
advancements of low-cost and energy-efficient light sources such as LEDs [11] and diode 
lasers [12] enable the construction of compact miniaturized optical transceivers for data, 
image, and video transmission [13]. 

The aforementioned works mainly consider line-of-sight (LOS) configuration, which 
inherently imposes strict requirements on positioning, acquisition, and tracking (PAT) 
[14,15]. In underwater conditions, the transmitted photons are scattered and absorbed by 
water molecules, dissolved ions, organic matters, and suspended particulates or planktonic 
organisms. Underwater LOS communication link may also be obstructed by hills and rocks. 
Both of these scenarios will lead to scintillation, deep-fading, or complete loss of signals. To 
this end, non-line-of-sight (NLOS) communication can be implemented to mitigate the 
abovementioned issues, which can be implemented either through light reflection from the 
water surface [16] or light scattering [17] from the molecules in the water. A diffused-
reflection NLOS communication can also be implemented; for example in [18], which 
reported a 500 kbps, 6.6 m link. 

Path loss can be adopted as a figure-of-merit to study NLOS communication channel as 
lower path loss indicates higher communication data rate and received signal-to-noise ratio 
(SNR) performances. It is affected not only by the channel geometries but also the water 
turbidity, transmission power, and wavelength utilized in the data transmission channel. It is 
noted that in the literature merely reports on simulation works, for instance those based on 
Monte Carlo method [19] and Henyey-Greenstein (HG) phase function [3], including impulse 
response [17,20], bit-error rate (BER) performance predictions [17,21] as well as the effect of 
channel geometries on path loss [22]. Experimental data is much needed to guide the 
experimental design of eventual long-distance NLOS transmission. 

In this paper, we demonstrate the merits of NLOS UWOC link based on 375-nm laser in 
which link performance can be enhanced predominantly through multiple scattering. For a 
comprehensive evaluation, we experimentally measured the effect of geometries, water 
turbidity, and wavelengths on path-loss. On the significance of the present work, we noted 
that previous wavelength used in UWOC are mainly in the “transparent window” (400~600 
nm) for light aquatic-attenuation [23–25]. However, to achieve both low light aquatic 
attenuation and high scattering for achieving a good NLOS UWOC link, we use the enhanced 
scattering property of 375 nm. To the best of our knowledge, this is the first experimental 
investigation of NLOS UWOC based on 375-nm diode laser. 

2. Experiment details 

The experimental setup is depicted in Fig. 1. The transmitter consisted of an ultraviolet diode 
laser (Thorlabs L375P70MLD) with a maximum output power of 70 mW and a peak 
wavelength of 375 nm. For cooling and heat-sinking, the laser is mounted on Thorlabs 
TCLDM9, which is connected to Thorlabs ITC4001 laser-diode and thermoelectric cooler 
(TEC) controller. Meanwhile, to demonstrate the significant advantage of 375-nm, the path 
loss data was compared to a 405-nm diode-pumped solid-state (DPSS) laser (Changchun New 
Industries MDL-III-405-500mW) with a maximum output power of 500 mW and a peak 
wavelength of 405 nm, whose wavelength is in the “transparent window”. A series of plano-
convex lenses are used for collimating the laser beam. 
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The laser beam propagates through the transparent glass water tank, which has a 
transmittance of ~94% at the wavelengths under investigation. xTΦ  in Fig. 1 is the beam 

divergence angle, which changes in various water conditions due to different scattering 
effects. xTϕ  is the transmitter azimuth angle that can be changed using a rotation stage. 

Besides, the transmitter and receiver are placed in a coplanar configuration. 
A water tank with dimensions of length 45 cm × width 30 cm × height 35 cm is utilized. 

Except for the incident glass wall (45cm × 35 cm), the other inner walls of the water tank are 
covered using black cloth to diminish the reflection effect from the glass wall. Besides, a 
beam dump (Newport PL15), which is a device designed to absorb the energy of photons or 
other particles within an energetic beam, is installed near the back wall inside the glass tank 
to totally eliminate the effect of reflection. The transmission power is fixed at 50 mW during 
all the measurements except for the path loss measurements as a function of transmission 
power. Furthermore, to ensure that the scattered light is purely coming from water, a large 
enough blackboard was installed between the transmitter and receiver to block off any 
scattered light from the air. All the measurements were in a darkroom at a temperature of ~20 
°C. 

At the receiver end, a power meter (Newport 2936-C) and a photodetector (Newport 818-
UV/DB) with wavelength response in the range of 200-1000 nm, a clear aperture of 10.3 mm, 
and calibration uncertainty without attenuator of ± 1% @ 350 – 949 nm is utilized. xTΦ  in 

Fig. 1 is the field-of-view (FOV) of the detector, which is 100° in our experiment. xTϕ  is the 

receiver azimuth angle that can be changed using a rotation stage. 

 

Fig. 1. Experimental setup: (a) block diagram indicating various parameters, and (b) an image 
of the setup. 

In natural waters, the particle size range of interest is limited in the first approximation to 
roughly 0.01 to 1000 μm. This range is of interest to those researchers who are concerned 
with the optical properties of seawater and its influence on propagation of light in the sea 
[26]. In this investigation, the water turbidity is precisely controlled by adding commercial 
antacid (Maalox), which has suspension particles Al(OH)3 and Mg(OH)2 with the particle size 
in part of the above interval range, resulting in both Mie scattering (forward scattering) and 
Rayleigh scattering. In laboratory experiments, Maalox solution is known to present excellent 
scattering characteristics similar to real ocean particles [27,28]. Laux et al. experimentally 
validated the use of Maalox as scattering agent by measuring and comparing its volume 
scattering function (VSF) against two different measurements in a 3 m laboratory water tank 
in [27] which can be used as a baseline for determining the amount of Maalox concentration 
needed to emulate different ocean water types [13,29–31]. Volume (V in μL) of Maalox was 
calculated and added to the 23 liters of tap water in an orderly fashion based on [27] to 
produce four ocean waters, namely clear sea water, coastal water, harbor I water, and harbor 
II water. Before adding Maalox solution to simulate different water types, the tap water was 
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geometries (azimuth angles, baseline distance), and water turbidity (clear sea water, coastal 
water, harbor I, harbor II water), and wavelength (375 nm and 405 nm) on path loss. This 
comprehensive path loss study is crucial for laying the foundation for future evaluation of 
communication data rate and received SNR performances. The experimental results suggest 
that path loss of such links are favorable for smaller azimuth angles, stronger water turbidity, 
and shorter transmission wavelength, as exemplified by the use of 375-nm wavelength. Our 
work highlighted the potential to establish a NLOS UWOC link over tens of meters by using 
375 nm laser, even in turbid water media, including harbor waters. 
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