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Coupling of two identical channel waveguides separated by an air gap is analyzed. The coupled structure
exhibits a strong refractive index contrast in both the transverse and longitudinal dimensions, which
necessitates the use of a full-vectorial model. The 3D full-vectorial bidirectional method-of-lines beam
propagation is utilized for this purpose. The effect of the transverse and longitudinal displacements on
the modal reflectivity and modal transmissivity of the fundamental TE-like and TM-like modes is re-
ported. Numerical results are presented for both the full-vectorial model and the approximate semivec-
torial model. A significant difference between the predictions of these two models is seen. © 2009
Optical Society of America

OCIS codes: 130.2790, 230.7380, 130.0130.

1. Introduction

Guided wave structures are essential elements in op-
tical communications for the purpose of filtering, cou-
pling, switching, modulating, power splitting, etc.
They have been investigated widely in 2D work-
spaces utilizing various numerical techniques and in
both low-high-index-contrast material systems [1–7].
However, it is well known that high-index-contrast
structures cannot be well approximated by using 2D
models and thus require a rigorous 3D workspace for
analysis. The advent of fast processors and large
memory storage capabilities has initiated the devel-
opment and improvement of various numerical tech-
niques to model different waveguide problems in a
3D workspace rather than the 2D environment. This
includes the waveguide facets and step discontinu-
ities utilizing the finite difference time domain meth-
od [8], radiation modes method [9], transfer matrix
method [10], a field-based method [11], finite ele-
ment method [12] and bidirectional method-of-lines
beam propagation method (MoL-BPM) [13]. More-
over, multidiscontinuity problems, for instance,
coupled waveguides, tapered waveguides, and polar-

ization rotators, have been addressed by employing
the free space radiation mode method [14], mode
matching method, [15] and method of lines [16].
However, these reported waveguide problems are
based in general on low-index-contrast material sys-
tem under the 3D semivectorial approximation. Im-
proved 3D numerical techniques that are based on
the transverse magnetic formulation and the full-
vectorial nature of the field rather than semivectorial
approximation have recently been reported [17,18].
These MoL-BPM techniques account rigorously for
the longitudinal boundary condition and are, in gen-
eral, numerically efficient. With these promising fea-
tures, they can be applied to both low-and high-
index-contrast waveguide problems. They have been
applied to high-index-contrast waveguide facets [17],
coupled waveguides, and polarization rotators [18] to
show the effectiveness of the techniques rather than
investigating them, in general.

In this work, we propose to analyze the high-index-
contrast coupled channel waveguides utilized in [18].
The arrangement consists of two aligned raised
channel waveguides separated by an air gap forming
two strong longitudinal discontinuities. The struc-
ture may represent the practical problem of deter-
mining the transmission from a laser, across an air
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gap, and into a waveguide. The influence of the trans-
verse separation (vertical and lateral) on the modal
reflectivity and modal transmissivity of the coupled
waveguides will be presented, which closely simu-
lates a misaligned laser with a waveguide. To the
best of our knowledge, such an investigation has not
been reported in the literature. Numerical results of
the fundamental TE-like and TM-like modes utiliz-
ing the 3D full-vectorial MoL-BPM numerical tech-
nique [18] will be reported. Moreover, the results
obtained from both the full-vectorial and the semi-
vectorial formulations will be shown for comparison
and to highlight the difference between the predic-
tions of both formulations.

2. Background

A brief outline of the numerical approach that is
based on the transverse magnetic field formulation
is presented. The reader is referred to [17,18] for de-
tails. Consider the 3D wave equation that upon dis-
cretization in the transverse dimensions x and y,
using p and q sample points, respectively, yields the
following equation [17]:

d2

dz2
�HþĈ2 �H ¼ �0: ð1Þ

The general solution of the above equation is �H ¼
ej Ĉ z �Aþ e−jĈz�B. �H ¼ ð�Hx

�HyÞT , where the column vec-
tors �Hx and �Hy contain the magnetic field component
Hx and Hy in discrete form, respectively. The square
matrix Ĉ2 is the characteristic matrix that accounts
for the spatial derivatives in the x–y plane as well as
the coupling between the transverse magnetic field
components Hx and Hy [17]. The square matrices
e�jĈz account for the forward and the backward fields,
respectively. The transverse electric field compo-
nents, in discrete form, can be obtained from the
transverse magnetic field components by using the
following equation [18]:

�E ¼ Ŝ�H; ð2Þ
where �E ¼ ð�Ey − �ExÞT and where �Ex and �Ey contain
the discretized values of the transverse electric field
components Ex and Ey, respectively. The square ma-

trix Ŝ ¼
�
jk−10

ffiffiffiffiffiffiffiffiffiffiffiffi
μ0ε�1

0

q �
N̂−2ðÔ − Ĉ2ÞðjĈÞ−1, where N̂2

contains the square of the refractive index distribu-
tion and Ô accounts for the transverse differential
operators in discretized form. The square matrix
ðjĈÞ−1 corresponds to the integration operator that
appears in the transverse electric field relation. It
is noteworthy that the size of the square matrix Ŝwill
be pq × pq for the semivectorial formulation and
2pq × 2pq for the full-vectorial model.
Now, consider two abrupt longitudinal discontinu-

ities placed at z ¼ 0 and z ¼ d, shown in Fig. 1, with
the input transverse magnetic field assumed to be in-
cident from the left at z ¼ 0. The transmitted and the
reflected magnetic fields of the structure shown in

Fig. 1 can be obtained by applying the continuity
of the transverse magnetic and electric fields at these
longitudinal boundaries (z ¼ 0 and z ¼ d). This re-
sults in a set of four equations that can be cast into
a simple linear matrix relation as shown [18]:

Γ̂ �X ¼ �Λ; ð3Þ
where

Γ̂ ¼

2
666664
ðŜ1 þ Ŝ2Þ −2Ŝ2P̂2 0̂ 0̂

0̂ ðŜ2 þ Ŝ3Þ ðŜ3 − Ŝ2ÞP̂2 0̂b0 ðŜ1 − Ŝ2ÞP̂2 ðŜ1 þ Ŝ2Þ 0̂b0 0̂ −2Ŝ2P̂2 ðŜ2 þ Ŝ3Þ

3
777775

�Λ ¼

2
66664
ðŜ1 − Ŝ2Þ�A1

�0

2Ŝ1 �A1

�0

3
77775:

The column vector �X ¼ ½�B1�B2�A2�A3�T contains the
required reflected (�B1) and transmitted (�A3) mag-
netic fields in addition to the fields within the discon-
tinuous structure. The term �A1 appearing in the
known column vector �Λ represents the incident mag-
netic field, while the square matrix P̂2 ¼ ejĈ2d is the
propagation matrix. The square matrix Ĉ, which is
required for obtaining the matrix Ŝ, has been ob-
tained by using Padé approximants of the square
root operator, and the matrix P̂ has been obtained by
using Padé approximants of the exponential operator
[7,18]. Equation (3) is a simple matrix relation that
can be solved iteratively utilizing the biconjugate
stabilized algorithm (BI-CGSTAB)[19]. However, sol-
ving Eq. (3) directly degrades the performance of BI-
CGSTAB, leading to an unacceptably large number
of iterations or even failure to achieve convergence.
To overcome this difficulty, Eq. (3) is preconditioned
in amanner similar to the one reported in [18], before
application of BI-CGSTAB.

3. Numerical Results

In this section, the numerical approach is first de-
monstrated for accuracy and later applied to analyze
the coupled channel waveguides utilized in [18]. The
results of both the semivectorial and full-vectorial

Fig. 1. Two abrupt longitudinal discontinuities placed at z ¼ 0
and z ¼ d.
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models are shown for comparison, assuming the fun-
damental TE-like (TE00) and TM-like (TM00) modes
to be incident on the first longitudinal discontinuity
placed at z ¼ 0. The Padé orders associated with the
square root and the propagation operators are fixed
at 4 and 8, respectively [18]. In addition, the wave-
guides are surrounded by a perfectly matched ab-
sorbing layer from all sides to absorb the radiative
field [20].
Since the analysis requires calculating the funda-

mental TE-like and TM-like mode transmissivity
(the ratio of the transmitted mode power to the inci-
dent mode power) and mode reflectivity (the ratio of
the reflected mode power to the incident mode
power), the procedure used for calculating these va-
lues will be briefly explained. The modal transmis-
sivity Tm0m, associated with the transmitted mode
m0 and the incident mode m, is given by

Tm0m ¼ Pt
m0=Pi

m; ð4Þ

where the incident mode power Pi
m and the trans-

mitted mode power Pt
m0, respectively, are given by

Pi
m ¼ 0:5

ZZ
ReðEi

x;mHi�
y;m − Ei

y;mHi�
x;mÞdxdy; ð5Þ

Pt
m0 ¼ 0:5

ZZ
ReðEt

x;m0Ht�
y;m0 − Et

y;m0Ht�
x;m0 Þdxdy: ð6Þ

The superscripts i and t refer to the incident and
transmitted fields, respectively, and the asterisk in-
dicates the complex conjugate. The transverse elec-
tric and magnetic field components appearing in
Eqs. (5) and (6) are modal field components, as indi-
cated by the subscripts m and m0. The modal field
associated with the incident mode m is readily avail-
able, because the incident field is purely modal. How-
ever, the transmitted modal field needs to be
extracted from the transmitted field before applica-
tion of Eq. (6). This can be done by first finding the
associated transmitted mode amplitude αtm0 and then
multiplying it by a suitably normalized version of the
transmitted modal field. A simple numerical proce-
dure that can be used to calculate the mode ampli-
tudes has been reported in [16]. This method may
also be used to calculate the modal reflectivity Rm0m
associated with the reflected mode m0 and the inci-
dent mode m.
Now, consider the coupled buried waveguide struc-

ture shown in Fig. 2(a). It consists of two identical
buried low-index-contrast waveguides separated by
an air gap of width L. All the relevant waveguide
parameters are shown in the figure. The arrange-
ment has been previously reported under the 3D
semivectorial approximation [14,15]. Figure 3 shows
the variation of the modal transmissivity of the TE-
like and TM-like modes of the coupled waveguides as
a function of the air gap width L, based on the semi-
vectorial model. The results reported in [14] and our

results are observed to be virtually indistinguish-
able. This establishes the accuracy of the present
technique. However, it is observed that the low-in-
dex-contrast material system of the selected struc-
ture does not show any difference between the
semivectorial and the full-vectorial representations
of the field.

To further ascertain the accuracy of the numerical
approach under the high-index-contrast environ-
ment, another coupled channel waveguide shown in
Fig. 2(b) is considered [18]. The structure consists of
two identical channel waveguides separated by an
air gap of width L. The arrangement exhibits strong
discontinuities in both the longitudinal and the
transverse dimensions. All the relevant waveguide
parameters are indicated in the same figure, and
the air gap width is fixed at L ¼ 0:1 μm. In this case,
the waveguide parameters are unaltered except for
the waveguide core width wx, which is varied from
1.0 to 5:0 μm. The calculated result of the fundamen-
tal TE-like and TM-like mode reflectivity and trans-
missivity as a function of the core width wx is shown
in Fig. 4. The results of both the semivectorial and
the full-vectorial models are shown in the figure. No-
tice that when the waveguide core width wx in-
creases, the modal transmissivity and reflectivity
values obtained by using the semivectorial and
full-vectorial models approach each other. They sub-
sequently approach the calculated results of the cor-
responding 2D model, as indicated by the arrows
shown in the figure. The results shown in Fig. 4
further ascertain the accuracy of the technique. It
is noteworthy to mention that when the waveguide
width wx becomes small, the results obtained from
both the semivectorial and full-vectorial models
show a substantial difference in the modal transmis-
sivity values [see Fig. 4(b)]. The deviation in the re-
sults of the semivectorial and full-vectorial models is
clearly due to the full-vectorial model’s accounting
for the minor field as well. However, the modal reflec-
tivity values as predicted by bothmodels remain gen-
erally in good agreement for the entire range of the
waveguide core width wx [see Fig. 4(a)].

The numerical approach demonstrated above will
now be utilized to analyze the coupled high-index-
contrast channel waveguides shown in Fig. 2(b).
We will first consider the effect of the air gap width
L on the fundamental TE-like and TM-like mode re-
sponses. As mentioned earlier, this arrangement
may simulate power coupling from a laser, through
air, and into the optical waveguide. The waveguide
core width is fixed at wx ¼ 1:0 μm, keeping all the re-
maining parameters of the structure unaltered. The
full-vectorial transverse magnetic field patterns of
the fundamental TE-like and TM-like modes of the
input waveguide are shown in Fig. 5. The corre-
sponding calculated mode effective indices are
3.45647 and 3.46508, respectively. Figures 6 and 7,
respectively, show the calculated fundamental TE-
like and TM-like mode responses as a function of
the air gap width L. These two figures show the
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calculated mode reflectivity, transmissivity, and frac-
tion of radiated power (FPR) under the semivectorial
and full-vectorial assumptions. Since the channel
waveguides depicted in Fig. 2(b) are single mode,
the FPR may be calculated by using the relationship
FPR ¼ 1 −modal reflectivity −modal transmissivity,
by assuming negligible polarization cross coupling.
Again, a substantial difference in the calculated re-
sults obtained from the semivectorial and the full-
vectorial models are noticeable for the entire range
of the air gap width under consideration. As shown
in Figs. 6 and 7, the modal reflectivities associated
with the TE-like and TM-like fundamental modes,
respectively, attain their maximum values for an
air gap width L ≈ 0:5 μm, which is due to constructive
interference (Fabry–Perot cavity effect). Throughout
this work the maximum longitudinal step size is set
to Δz ¼ 0:1 μm. In addition, convergent results typi-
cally require a transverse mesh density of 20 mesh
points per micrometer. The BI-CGSTAB routine re-
quires about 15 to 20 iterations to converge.

Fig. 2. (a) Two identical coupled buried waveguides and (b) two identical coupled raised channel waveguides.

Fig. 3. Calculated semivectorial results of the fundamental TE-
like and TM-like mode transmissivity corresponding to the
coupled waveguides shown in Fig. 2(a) at the operating wave-
length λ ¼ 0:86 μm.
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Further to the investigation of the coupled channel
waveguides, if the right channel waveguide (output
waveguide) of Fig. 2(b) is displaced from its original
position in the transverse direction (horizontal or
vertical), the power coupled to the output waveguide
is expected to decrease with an increase in the modal
reflectivity and FPR. This may again emulates the
practical problem of a misaligned laser with an opti-
cal waveguide. In order to examine this assumption,
the vertical axis (y axis) of the output waveguide is
moved in the horizontal direction (along the x axis)
with respect to the vertical axis of the input wave-
guide. This displacement is termed the horizontal
displacementΔx throughout this paper. With this ar-
rangement, the mode reflectivity and transmissivity
of the coupled channel waveguides [see Fig. 2(b)] is
calculated as a function of the horizontal displace-

mentΔx. The analysis is carried out under two situa-
tions. The first situation considered is when the
input and the output waveguides have no longitudi-
nal separation (i.e., L ¼ 0 μm). In the second situa-
tion, the longitudinal separation between the two
channel waveguides is fixed at L ¼ 0:1 μm, resulting
in a small air gap. The remaining parameters of the
waveguides are kept unchanged. The calculated re-
sults are shown in Figs. 8 and 9 which correspond
to the fundamental TE-like and the TM-like modes,
respectively. As seen in Fig. 8, a disagreement in the
modal reflectivity values of the fundamental TE-like
mode is observed in general at relatively large values
ofΔx, as predicted by both the semivectorial and full-
vectorial models for both situations. This discre-
pancy can be easily noticed whenΔx > 0:3 μm for the
first situation (L ¼ 0 μm) and Δx > 0:8 μm for the
second situation (L ¼ 0:1 μm). On the other hand,
the modal transmissivities as predicted by both
the semivectorial and full-vectorial models are

Fig. 4. Fundamental TE-like and TM-like (a) mode reflectivity
and (b) mode transmissivity, corresponding to the coupled channel
waveguides shown in Fig. 2(b) at the operating wavelength λ ¼
1:55 μm and a fixed air gap width L ¼ 0:1 μm.

Fig. 5. Magnitude of the incident fundamental TE-like and TM-
like modes corresponding to the coupled channel waveguides
shown in Fig. 2(b) at the operating wavelength λ ¼ 1:55 μm and
core width wx ¼ 1 μm.

Fig. 6. Fundamental TE-like mode response corresponding to the
coupled channel waveguides shown in Fig. 2(b).

Fig. 7. Fundamental TM-like mode response corresponding to
the coupled channel waveguides shown in Fig. 2(b).
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generally in good agreement throughout the range of
the horizontal displacement Δx for the case of di-
rectly coupled waveguides (L ¼ 0 μm). However, in
the case of waveguide coupling through an air gap
(L ¼ 0:1 μm), the modal transmissivity values calcu-
lated by the semivectorial and the full-vectorial mod-
el show some discrepancy when Δx < 0:4 μm. The
fundamental TM-like mode response of the structure
(Fig. 9) again depicts similar behavior of the modal
transmissivity and reflectivity curves as predicted
by the semivectorial and full-vectorial models for
both situations. In Figs. 8 and 9, the modal reflectiv-
ity tends to stabilize at a nonzero value when Δx ex-
ceeds a value of roughly 0:8 μm, while the modal
transmissivity tends to zero in this same range.
The reason for this behavior is obvious, since beyond
this relatively large horizontal displacement, the
output waveguide is effectively replaced by air, caus-

ing the stabilized nonzero modal reflectivity. The out-
put waveguide also becomes sufficiently displaced
away from the input modal field, resulting in negli-
gible power coupling. Because the waveguide struc-
ture is symmetrical with respect to the vertical axis;
the results associated with negative values of the
horizontal displacement Δx are expected to be iden-
tical to these obtained using positive values of Δx.

Another possibility for transverse separation is
when the horizontal axis of the output waveguide
shown in Fig. 2(b) is displaced vertically with respect
to the horizontal axis (x axis) of the input waveguide.
This displacement is termed the vertical displace-
ment Δy throughout this paper. The modal reflectiv-
ity and transmissivity variation with Δy are shown
in Figs. 10 and 11, corresponding to the TE-like
and the TM-like modes, respectively. Again, two
situations (L ¼ 0 μm and L ¼ 0:1 μm) are considered
here. In this case, the arrangement is asymmetric

Fig. 8. Fundamental TE-like mode response corresponding to the
coupled channel waveguides shown in Fig. 2(b) when the output
(right) waveguide is displaced in the horizontal direction.

Fig. 9. Fundamental TM-like mode response corresponding to
the coupled channel waveguides shown in Fig. 2(b) when the out-
put (right) waveguide is displaced in the horizontal direction.

Fig. 10. Fundamental TE-like mode response corresponding to
the coupled channel waveguides shown in Fig. 2(b) when the out-
put (right) waveguide is displaced in the vertical direction.

Fig. 11. Fundamental TM-like mode response corresponding to
the coupled channel waveguides shown in Fig. 2(b) when the out-
put (right) waveguide is displaced in the vertical direction.

1 August 2009 / Vol. 48, No. 22 / APPLIED OPTICS 4473



with respect to horizontal axis; the results of both the
negative and the positive vertical displacements are
shown in Figs. 10 and 11. Both of these figures show
a significant variation in the modal reflectivity and
transmissivity values corresponding to L ¼ 0 μm
and L ¼ 0:1 μm, as predicted by both the semivector-
ial and full-vectorial models. In general, the modal
reflectivity value is noticeably large when the verti-
cal displacement Δy is negative (i.e., downwards dis-
placement of the output waveguide). This is due to
the input fundamental mode seeing air as the second
region whenΔy becomes more negative, whereas, for
positive values of Δy, the modal reflectivity value
reaches a steady-state value. For the situation where
the waveguides are coupled by an air gap, the steady-
state values of the fundamental TM-like and the TE-
likemode reflectivities are, respectively, 0.15 and 0.1.
The steady-state modal reflectivity value corre-
sponding to the direct coupling of the two wave-
guides, for both the TE-like mode and the TM-like
mode, is observed to be very low (≈10−4). This is cer-
tainly due to the input mode’s seeing the substrate of
the output waveguide as the second region, which
corresponds to a low-index-contrast longitudinal in-
terface. In general, the modal transmissivity value
corresponding to L ¼ 0 μm is identical, as predicted
by both the semivectorial and full-vectorial models,
from Figs. 10 and 11. However, the modal trans-
missivity corresponding to the coupling of two
waveguides with an air gap (L ¼ 0:1 μm) shows sig-
nificant difference in the range −0:2 μm ≤ Δy ≤

0:2 μm. The modal transmissivity values predicted
by the full-vectorial model are observed to be some-
what lower than the prediction of the semivector-
ial model.

4. Conclusion

In this paper, two coupled raised channel waveguides
that exhibit a high index contrast in both the long-
itudinal and transverse dimensions has been ana-
lyzed. The numerical results of both longitudinal and
transverse misalignments showed a substantial dif-
ference in the power coupled to the output waveguide
and the power reflected back into the input wave-
guide, as predicted by both the semivectorial and
the full-vectorial models. The difference in the calcu-
lated results obtained by both models is observed to
be somewhat larger for the TE-like case when com-
pared to the TM-like case.
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