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A Numerical Approach for Full-Vectorial Analysis
of 3-D Guided Wave Structures With Multiple and
Strong Longitudinal Discontinuities

Husain Ali Jamid and Mohd. Zahed M. Khan

Abstract—In this work, an accurate and efficient iterative
numerical approach suitable for the analysis of 3-D guided wave
structures is presented. The proposed method is fully vectorial
and based on the transverse magnetic field formulation. In order
to enhance the computational efficiency of the proposed method,
a hybrid implementation is utilized using Padé approximants
in tandem with a reduced spectrum of eigenpairs. The present
formulation can account for the presence of strong and mul-
tiple longitudinal discontinuities. Convergence of this iterative
approach is achieved by the use of a simple preconditioner. The
accuracy and efficiency of the proposed method are demonstrated
by applying it to two different guided wave structures with mul-
tiple longitudinal discontinuities.

Index Terms—Waveguide discontinuities, padé approximations,
3-D waveguides, full-vectorial methods.

I. INTRODUCTION

UMERICAL methods are indispensable tools for the

design and synthesis of guided optical structures and de-
vices. Several propagational methods have been reported in the
literature. This includes the beam propagation method (BPM)
[1]-[8], the method of lines (MOL) [9]-[11], the transfer ma-
trix method (TMM) [12], [13] and the mode matching method
[14]-[17]. Purely propagational numerical methods are limited
in applicability to optical structures in which the backward
field may be ignored without adversely affecting the numerical
results. However, a number of important guided wave structures
do not satisfy this condition, which may be due to the presence
of one or more sufficiently strong and abrupt longitudinal
discontinuities. Obviously, propagational methods which can
account for the presence of multiple longitudinal discontinuities
have a wide range of applicability and can simulate optical
devices with varying complexities. Various 2-D propagational
methods that can account for single [1], [2], [9], [18]-[20]
and multiple [3]-[8], [14]-[16] longitudinal discontinuities
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have been reported in the literature. Although these previously
reported approaches are generally both accurate and efficient,
they are limited to 2-D device simulation. The use of the more
realistic 3-D model, based on the semi-vector or the full-vector
field representations, is essential for accurate simulation of a
number of guided optical structures. Although in principle many
2-D methods may be extended to the 3-D case, this extension
usually leads to prohibitive numerical demand, which is espe-
cially true for 3-D full-vectorial models. This in turn may limit
the applicability of the 3-D model to optically small devices. In
the 3-D case, very little work has been reported in the literature
in relation to propagational methods that account for reflection
at single [21], [22] and multiple longitudinal discontinuities
[10]-[12], [17]. Three dimensional propagational methods that
account for multiple longitudinal discontinuities, under the
semi-vectorial assumption, were reported in [12], [17], [21] and
under the more realistic full-vector assumption were reported
in [10], [11]. A variation of the MOL that utilizes a reduced
spectrum of eigenpairs [10], [11] has the widest range of
applicability to guided wave structures, because it can account
for 3-D problems with multiple longitudinal discontinuities
using a full vector formulation. Although the use of a reduced
spectrum of eigenpairs enhances the efficiency of the MOL,
this method may remain numerically demanding and may result
in numerical instabilities in the presence of strong longitudinal
discontinuities. The presence of this type of discontinuity may
lead to the excitation of highly evanescent waves, which in
turn leads to the requirement of a relatively large number of
eigenpairs for proper satisfaction of the interface conditions
and may render this method inefficient. The iterative method
reported in [7] utilizes Padé approximants for the reflection and
propagation operators and has been demonstrated for a 2-D
corrugated waveguides with a relatively large number of lon-
gitudinal discontinuities. This iterative method is particularly
interesting, because it has the potential for extension to the 3-D
domain in an efficient manner. To the best of our knowledge,
such extension has not been reported in the literature.

In this work, we propose to extend the method reported in
[7] to three dimensions, while accounting for the full vector na-
ture of the field, by utilizing a transverse H field formulation.
To ensure rigorous satisfaction of the full vectorial boundary
condition at a strong and abrupt longitudinal discontinuity, the
approach reported in [22] will be utilized for this purpose. This
will allow the extended method to account for multiple longi-
tudinal discontinuities, irrespective of their strength. Two im-
plementations of the extended method will be presented in this
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work. The first implementation utilizes Padé approximants to
account for both the reflection and propagation operators. The
second implementation utilizes a hybrid approach, in which the
reflection operator is calculated using Padé approximants and
the propagation operator is calculated using a reduced spectrum
of eigenpairs. As will be seen later, the second implementation
can lead to substantial reduction in the computational time for
optically large devices. Both of these implementations will be
demonstrated for accuracy and efficiency. The proposed method
is iterative in nature and it generally requires the use of a pre-
conditioner for convergence of the numerical results. A simple
preconditioner will be presented for this purpose.

II. THEORY

A. Transverse Magnetic Field Formulation

A brief theoretical background of the transverse magnetic
field formulation will be presented in this section. The reader
is referred to [22] for details. Consider the 3-D wave equation

0’H  9°H N 0*H
Ox? 0y? 022

+k3n*H =0 (1)

where H represents either H, or H,, ko = 27/ is the free
space wave number and n is the refractive index of the medium,
which is assumed to be locally uniform. Upon discretization of
(1) in the transverse dimension (z, y) using (p, ¢) sample points,
respectively, we have

d*H
dz?

+Q°H=0 )

where the column vector H = (H x Hy )T and the column sub-
vectors H, and H, contain the discretized values of H, and
H,, respectively. The square matrix Qz is the characteristic ma-
trix which accounts for the spatial derivatives in the x — y plane
as well as coupling between the transverse magnetic field com-
ponents H, and H,. The general solution of (2) is given by

H =P A+ 9B 3)

where the square matrices 779 and ¢~7%* are propagational
operators which account for the forward and backward fields,
respectively. The discrete transverse electric field components
can be expressed in terms of the transverse magnetic field com-
ponents using the following matrix relationship:

E=SH 4)

where F = (E, — E,)T and the column subvectors £, and
E, contain the discretized values of £, and F,, respectively.
The square matrix operator:

5= (jVno/eo/ko)N (0 -QHGQ)™ )

relates the transverse electric and magnetic field vectors. The
square matrix N contains the discrete values of n? and the
square matrix operator O accounts for the transverse spatial
derivatives in discrete form. The square matrix (5Q)~! corre-
sponds to an integration operator in the z direction.
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B. Application to Multiple Longitudinal Discontinuities

Now, consider the multilayer structure shown in Fig. 1, which
consists of M + 1 abrupt longitudinal discontinuities. The semi-
infinite layer (z < 0) is the input layer and the semi-infinite
layer (z > zjps) is the transmission layer. The incident trans-
verse magnetic field vector A in the input layer is assumed to be
known. With the exception of the transmission layer (layer M +
1), the magnetic field within any layer contains both forward and
backward components. Within the m th layer (z,—1 < z <
Zm ), the transverse magnetic field can be expressed as

Hm — eij(z—mel)Am + e_ij(Z—Zm)Bm. (6)

The continuity conditions of the transverse electric and mag-
netic fields at the interface z = z,,, are imposed using (4) and
(6), which result in the following relations:

Zm + Fm = Zm—i—l + Fm—l—lFm-‘,-l (7a)
g77'1,—}-1(21%—‘,-1 - ﬁm—l—lﬁm—l—l)- (7b)

The matrix operator P,, = ¢/@m(m—2m-1) = £iQmdm \where
d,,, correspond to the width of the mn th layer. By considering all
values of m = 0,1,2,..., M + 1, (7) leads to a set of 2(M +
1) equations for the unknown vectors Ay, Ao, ......, Ayryq

and By, By, ......, By. After some simple algebraic manip-

ulation, these equations can be cast as a linear system of equa-
tions, which is similar, in its general form, to the one reported

in [7]
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within the right most layer.
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The unknown column vector X appearing in (8) contains the
required reflected B and transmitted A, 7+1 magnetic fields as
well as the magnetic field within all interior layers. The known
column vector A basically contains the incident magnetic field
Ay. The all zero square matrices, 0, appearing in I" and the all
zero column vectors, 0, appearing in A are equal in size to S and
Ay, respectively.

In the system of linear equations represented by (8), the di-
mension of each of the square matrices S and P equals 2pq and
thus the dimension of the square matrix " equals 4pg(M + 1).
For a small computational window using only 50 x 50 sample
points in the transverse dimension and a total of only three layers
in the z direction (i.e., M = 1), leads to a linear system with a
dimension of 20 000. Obviously, this large dimension prohibits
direct inversion of T and therefore solution of (8) calls for an it-
erative method. For this purpose, the well-known Bi-Conjugate
Stabilized algorithm (Bi-CGSTAB) [19] will be used to solve
(8) for the unknown vector X.

C. Full Padé Approach

For the present 3-D full-vector formulation, explicit calcula-
tion of the matrices S and P also becomes prohibitive, even for
a small-sized computational window. In order to avoid explicit
calculation of these matrices, we utilize Padé approximants with
branch cut rotation, known to simultaneously account for both
the propagating and evanescent waves of the spectrum [2], [8],
[18], [23]. The matrix @, which is required to obtain the matrix
S, is found using Padé approximants of the square root operator
and the matrix P is found using Padé approximants of the ex-
ponential operator. The term Full Padé refers to the use of Padé
approximants for both @ and P. The relevant expressions are
respectively shown below

C))

Multilayer structure with abrupt longitudinal discontinuities. The incident and reflected fields exist within the left most layer and the transmitted field exists
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As shown in (9) and (10), the order of Padé approximants for
Q and P are p, and p,, respectively. The square matrix F' =
aQ — I where I is the identity matrix and o = ve'® is a
branch cut rotation factor [23]. The scalar parameters aj; and
bi. are Padé primes of the square root operator, are given in [5].
The scalar parameters cy, di, and ey, are Padé primes of the ex-
ponential operator. These parameters may be calculated using a
standard method for finding Padé primes utilizing Taylor series
coefficients of the exponential function. The parameter Az rep-
resents the propagational step size. It is noteworthy to mention
that Q and P appearing in (9) and (10), which are full matrices,
are not calculated explicitly. Rather they are used in sparse ma-
trix vector multiply and sparse matrix vector divide involving
the submatrices of A and the corresponding subvectors of X
[7].

The Full Padé formulation introduced in this section is suit-
able for 3-D guided wave structures exhibiting multiple and
strong longitudinal discontinuities. However, its application to
guided wave structures with optically wide longitudinal layer
widths d,,,, may lead to substantial degradation of the compu-
tational efficiency. For accurate calculation of the operator P,
using (10), the step size Az must be made sufficiently small (on
the order of 1.0 um). Thus, for wide layers, repeated calcula-
tions using (10), will be necessary to account for the full layer
width d,,,, which may lead to poor computational efficiency. A
proposed alternative approach, which overcomes this limitation,
will be introduced in the next section.

D. Hybrid Approach

In (8), the matrix operator P is a pure propagation operator,
used to account for field propagation within a specific layer. For
instance, the propagation operator P,,, accounts for field prop-
agation from one end of layer m to the other end of the same
layer. This operator may be implemented using a reduced spec-
trum of eigenpairs [10], [11], which is an alternative approach
to the one expressed by (10). For a reduced set of 7 eigenpairs,
the propagation operator may be approximated by

P = ¢iQA% o TeiCAz(y (11)



120

where T' = Th,x is a rectangular matrix containing a reduced
set of r eigenvectors of the characteristic matrix Q2 and C' =
C,xr is a diagonal matrix which contains the corresponding 7
eigenvalues. The rectangular matrix G = G2, is the pseudo-
inverse of the matrix 7. The matrix G can easily be calculated
using the transpose of the characteristic matrix Q2 [11]. The
approximate propagation operator P seen in (11) has the same
dimension as the original operator, that is P = ngqxgpq. The
accuracy of (11) depends on the number of eigenpairs used in
the reduced set. One advantage of using (11) instead of (10) is
that when a sufficient number of reduced eigenpairs is used, the
step size Az becomes unrestricted and may be made arbitrarily
large. Another advantage of this equation is that, for each layer,
a relatively small number of eigenpairs is required to be calcu-
lated, only once. We will later demonstrate that the use of (11)
to account for the propagation operator can lead to substantial
reduction in the computational time.

The matrix operator S, defined by (5) is the only operator re-
lated to field reflection/transmission at a longitudinal interface
between two adjacent layers (see Fig. 1). For instance, the com-
bination of the operators S,, and S, are the only operators
that locally determine the reflected/transmitted field at the inter-
face between layers m and m + 1. It is also possible to approxi-
mate the operator S using a reduced set of eigenpairs. However,
our experience shows that for sufficiently strong longitudinal
discontinuities, this approximation may lead to the requirement
of a very large number of eigenpairs which results in an inef-
ficient implementation. In particular a strongly guiding struc-
ture (in the transverse direction) which simultaneously exhibits
a strong longitudinal discontinuity results in the excitation of
highly evanescent waves at the longitudinal interface on the low
index side of the interface. In order to accurately calculate the
reflected/transmitted field, highly evanescent waves must be ac-
counted for. This leads to the requirement of a large number of
eigenpairs for accurate representation of the operator S. For this
reason, we will use a hybrid approach in which the square root
operator () (and thus S) is calculated using Padé approximants
while the propagation operator P is calculated using a reduced
set of eigenpairs.

E. Preconditioner

Solving (8) iteratively in its current form usually requires a
large number of iterations and may also lead to failure of con-
vergence of the Bi-CGSTAB algorithm. In order to reduce the
number of iterations and to ensure convergence, (8) needs to be
preconditioned. In this work, we propose to use a preconditioner
based on first order Padé approximants. The proposed precon-
ditioner, which is applied to (8), is

b = (27 +0.50%%) " (T +0.75p%%) (R2%) ™ (12)

where
78 = 0.5(Fpm + Frug1)
FAE — (0.5 (W;f’ [6m - @‘;}

—2 [= )
+Nm+1 [Om+1 - Qm+1j|>
m=0,1,...,. M
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Fig. 2. Two identical channel waveguides with an air gap.

The preconditioned linear system of equations can be formu-
lated by left multiplying the preconditioner &,,, by each corre-
sponding row of square matrices appearing in (8). For instance,
6o is left multiplied by the first and (M + 2)th rows of matrices
and &; is left multiplied by the second and (M + 3)th rows of
matrices. The preconditioned linear system can then be solved
iteratively using the Bi-CGSTAB algorithm.

III. NUMERICAL RESULTS

The numerical results of the full Padé and the hybrid ap-
proaches will be presented in this section and compared for ac-
curacy and efficiency. For all calculations to be presented, the
transverse computational window has been surrounded by a per-
fectly matched layer [24] and the input waveguide is excited
by its fundamental TE—Like mode. Moreover, throughout this
work, the magnitude and angle of the branch cut rotation factor
are fixed at y = (2.25x k2) 1 = 2.705x 10~2 and ¢ = —7/2,
respectively.

Before demonstrating the accuracy and efficiency of the pro-
posed methods, we will first consider their convergence prop-
erties with respect to Padé order and the propagational step
size Az. For this reason, we will utilize the strongly guiding
channel waveguide structure shown in Fig. 2. This structure ex-
hibits two strong longitudinal discontinuities due to the presence
of an air gap. All the relevant waveguide parameters are indi-
cated in the same figure. Padé order associated with the reflec-
tion operator has been previously investigated for waveguides
exhibiting strong longitudinal discontinuities [20], [22]. The re-
sults show that convergence of this operator is achieved at a Padé
order ps; = 3. Therefore, in this work, this parameter is fixed at
ps = 4.

Next, we examine convergence of Padé approximants asso-
ciated with the propagation operator, by investigating the Padé
order p. and the propagational step size Az (see (10)). For this
purpose, we calculate the modal transmissivity of the structure
shown in Fig. 2, since it has been observed to be more sensi-
tive to these two parameters than the modal reflectivity of the
structure. The calculated results as a function of the step size
Az are shown in Fig. 3 for a fixed air gap width L = 4 ym. The
curves in Fig. 3(a) correspond to Padé orders p. = 4,6, and 8
at a fixed transverse mesh density of 20 points per micrometer.
The modal transmissivity is seen to converge to the same value
=~ 0.015 for all the Padé orders under consideration. In addition,
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Fig. 3. Variation of the calculated modal transmissivity with the propagational step size Az. The results correspond to the structure depicted in Fig. 2 with a
4, m wide air gap. (a) The transverse mesh density is fixed at 20 (points/g¢ m), the number adjacent to each curve corresponds to the order of Padé approximant
associated with the propagation operator. (b) Padé order is fixed at p. = 8. The number adjacent to each curve corresponds to the transverse mesh density.

when the step size becomes very large, the calculated modal
transmissivity is seen to become negligibly small. This occurs
for instance when the combination p. = 8 and Az = 4.0 yum
is used. For such a case, the calculated field attains very high
spatial divergence, which results in negligible calculated power
reaching the output waveguide. As seen in Fig. 3(a), the edge
of convergence for Padé orders p. = 4, 6 and 8 correspond
roughly to Az = 0.4,0.5, and 1.0 pm, respectively. These re-
sults clearly show that lower order Padé approximants require a
smaller propagational step size than higher order ones. Thus, it
appears that from a computational point of view, the higher effi-
ciency gained by utilizing lower order Padé approximants may
be lost due to the lower value of the maximum allowed step size
Az. In addition, our own numerical experiments show that the
use of higher order approximants give marginally more accu-
rate results than lower order ones. Based on these observations
and for simplicity of coding, the order of Padé approximants as-
sociated with the propagation operator will be fixed at p, = 8,
in all subsequent numerical results. The effect of the transverse
mesh density on the step size Az is illustrated in Fig. 3(b), for
the selected Padé order p. = 8. This figure shows the calcu-
lated modal transmissivity corresponding to mesh densities 5,
10 and 20 points per micrometer. Again, the results are seen
to converge at Az ~ 1.0 pm. The convergence edge remains at
Az = 1.0 um, irrespective of the transverse mesh density. Thus,
in order to operate sufficiently far from the edge of convergence,
the maximum propagational step size, associated with Padé ap-
proximants of the propagation operator, is set to Az = 0.5 pm,
for all subsequent numerical results. However, it is to be stressed
that the maximum step size is generally problem-dependent.

The full Padé approach will now be checked for accuracy
against the well-established MOL numerical technique by ap-
plying them to the structure shown in Fig. 2, using a fixed air
gap width L = 0.5 p m. Fig. 4(a) shows the calculated modal
reflectivity of the fundamental TE-like mode as a function of
transverse mesh density. The modal reflectivity calculated using
the full Padé approach is seen to converge with increasing mesh
density. The MOL numerical technique used, which is based on
the full spectrum of eigenpairs, is memory intensive and it ex-
hausts the available computer memory beyond a mesh density
of seven points per micrometer. The calculated results using the
full Padé approach and the MOL are seen to be in good agree-
ment, which establishes the accuracy of the full Padé approach.
The corresponding CPU time requirements for these two tech-
niques are shown in Fig. 4(b). The MOL is seen to require more
CPU time and it exhibits a much higher rate of increase of the
CPU time requirement when compared with the full Padé ap-
proach.

Fig. 5 shows the modal reflectivity of the fundamental TE-like
mode as a function of the air gap width L. The transverse mesh
density is fixed at 20 points per micrometer, using a transverse
computational widow of size 2.6 ym x 3.7 yum in the  and y di-
rections, respectively. The calculated results using the full Padé
and the hybrid approaches are shown. The full Padé results, be-
lieved to be accurate, will be used as a reference. For the hybrid
approach, the calculated results correspond to 50, 100 and 200
eigenpairs. The results of the hybrid approach are seen to con-
verge to the full Padé results as the number of eigenpairs is in-
creased. It is interesting to note that, for the hybrid approach,
when the gap width is relatively large, the number of eigen-
pairs required for convergence is reduced. For instance, for a
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Fig. 4. (a) Variation of the fundamental TE-like modal reflectivity as a function
of transverse mesh density. The results correspond to the structure depicted in
Fig. 2 for a fixed air gap width of 0.5x m. The results of the full Padé approach
and the MOL numerical technique are shown. (b) The CPU runtime requirement
corresponding to Fig. 4(a).

gap width larger than about 2 pm, only 50 eigenpairs are re-
quired for convergence of the hybrid method. When the number
of eigenpairs is increased to 100, the calculated results begin
to converge at the gap width L ~ 1 pum. Using 200 eigen-
pairs, convergent results are obtained starting at the gap width
L =~ 0.25 pym. The reason for this behavior is easy to explain.
The hybrid approach utilizes a reduced spectrum of eigenpairs
to approximate the propagation operator P,, = exp(jQmdm ).
When the layer width d,,, becomes large, contribution of highly
evanescent waves to the propagation operator P,,, becomes neg-
ligible (due to their damping effect) and thus fewer number of
eigenpairs are required for accurate representation of P,,. On
the contrary, as d,,, becomes smaller, accurate representation of
P,, requires increasing contribution of the evanescent waves,
leading to the requirement of a larger number of eigenpairs. An-
other way to view this effect is by noting that when d,,, is suffi-
ciently large, the locally excited highly evanescent waves do not
link the abrupt interfaces on either side of layer m. As a conse-
quence, these interfaces are linked only by propagating waves
and possibly also by very weakly evanescent waves. In this par-
ticular case, highly evanescent waves become important only in
the determination of field reflection/transmission at these inter-
faces.

Fig. 6 shows the corresponding CPU time requirement of the
full Padé and the hybrid approaches. In this later figure, the CPU
runtime requirement has been calculated for an extended range
of air gap width, up to L = 8m. This is done to clearly illustrate
the relative time requirements of each approach when the layer
width becomes relatively large. For each run, the Bi-CGSTAB
algorithm requires a different number of iterations to converge,
which explains the non-monotonic nature of the curves shown in
Fig. 6. Typical number of iterations required by the Bi-CGSTAB
algorithm to converge to the results shown in Fig. 5 is roughly
20. The CPU time requirement corresponding to the full Padé
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approach shows a general increase with the gap width L. How-
ever, for the hybrid approach using 200 eigenpairs, the CPU time
requirement remains relatively low and substantially indepen-
dent of the air gap width. For a gap width L = 8 um, the CPU
time requirement of the hybrid approach is roughly six times
less than the requirement of the full Padé method. This demon-
strates that the use of the hybrid approach can lead to substantial
increase in the computational efficiency.

The polarization rotator depicted in Fig. 7, [10], [11],
[13] has been selected in order to demonstrate the full-vec-
torial capability of the current formulation. The fundamental
TE—Like mode of the input channel waveguide, which is almost
completely polarized in the horizontal direction, is used as exci-
tation. The polarization rotation angle # = tan=! \/Pr\1/ P,
where Prg and Pry; are respectively the TE and TM polarized
powers. All other relevant parameters are indicated in the
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Fig. 7. Guided wave polarization rotator.

figure. This periodic structure has equal longitudinal layer
widths d,,, = 105 pm, corresponding to one half period of the
polarization rotator. Although in principle the full Padé method
is applicable for the analysis of this device, it is expected to
be extremely inefficient due to the large values of d,,. For
this reason we will resort to the hybrid approach for the anal-
ysis of this structure, by equating the step size and the layer
width (i.e., Az = d,;,). For the polarization rotator shown in
Fig. 7, we utilize a transverse computational window of size
5.0 um x 3.5 pm in the z and y directions, respectively. In
order to obtain convergent results, a transverse mesh density of
16 points per micrometers and 150 eigenpairs have been used in
the hybrid approach. Fig. 8 shows the calculated rotation angle
as a function the total number of periods. The calculated results
using the hybrid approach are seen to be in good agreement with
those reported in [10] up to 6 periods, beyond which significant
difference is seen between the two results. However, our results
are seen to be in good agreement with those reported in [13]
up to 8 periods. A possible cause of disagreement between our
results and those reported in [13] for 9 and 10 periods, may be
due to the fact the calculated polarization rotation angle 6, is
sensitive to small errors in the calculated TE-polarized power
at large angles. In addition, the numerical approach reported in
[13] ignores reflection and excitation of radiative waves at the
interface, which may be another source of disagreement.

IV. CONCLUSION

In this paper, an iterative approach for the analysis of 3-D full-
vectorial guided wave structures exhibiting multiple and strong
longitudinal discontinuities has been presented. A full Padé ap-
proach and a more efficient variation using a hybrid method
were presented. The hybrid method utilizes Padé approximants
in tandem with a reduced set of eigenpairs. This combination
utilizes the ability of Padé approximants, with branch cut rota-
tion, to efficiently account for strong longitudinal discontinu-
ities, and the efficiency of eigenpair decomposition to account
for the propagation operator. The accuracy and efficiency of the
present formulation have been demonstrated by applying it to
two 3-D guided wave structures with multiple longitudinal dis-
continuities.
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