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A Noniterative Formulation for 2-D
Optical Waveguide Discontinuity Problems
Based on Padé Approximants

Husain Ali Jamid and Mohammed Zahed Mustafa Khan

Abstract—1In this letter, we propose a simple noniterative formu-
lation for the analysis of optical waveguide discontinuity problems.
The formulation, which is based on rotated branch cut Padé ap-
proximation scheme, is both accurate and efficient. It is computa-
tionally fast due to its noniterative nature. The effectiveness of the
proposed approach is demonstrated by modeling an optical wave-
guide air facet. Calculations show good agreement with previously
published results.

Index Terms—Optical waveguide discontinuities, Padé approxi-
mants, waveguide facet.

I. INTRODUCTION

ADE approximants have been established as efficient
Prational approximations for modeling optical waveguide
structures exhibiting longitudinal discontinuities. This is due to
their ability to account for highly evanescent modes excited at
waveguide interfaces using complex Padé primes or the branch
cut rotation technique. This approach has been widely applied
in the calculation of the reflected and transmitted fields of
two-dimensional (2-D) optical waveguide structures exhibiting
both, single [1]-[5] and multiple longitudinal discontinuities
[6]-[9]. Very recently, Padé approximants have also been
applied to three-dimensional (3-D) full-vectorial optical wave-
guide facet problems [10], showing the flexibility and versatility
of the method. However, the previously reported algorithms
are generally iterative in nature, which require iterative solvers
to obtain the numerical solution. In general, these iterative
methods require a relatively large number of iterations before
convergence is attained. The use of preconditioners [3]-[5]
results in a reduced number of iterations and thus enhances the
numerical efficiency of these methods.

In this letter, we present a simple and efficient noniterative
scheme based on Padé approximants, in the context of 2-D
space, for the simulation of optical waveguide structures ex-
hibiting an abrupt longitudinal discontinuity. The algorithm

Manuscript received September 22, 2007; revised December 27, 2007. This
work was supported in part by King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia.

H. A. Jamid is with the Electrical Engineering Department, King Fahd
University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia (e-mail:
hajamed @kfupm.edu.sa).

M. Z. M. Khan is with the Electrical and Electronics Engineering Tech-
nology Department, Hafr Al-Batin Community College, King Fahd University
of Petroleum and Minerals, Hafr Al-Batin 31991, Saudi Arabia (e-mail:
zahedmk @kfupm.edu.sa; zahedmk @yahoo.co.in).

Digital Object Identifier 10.1109/LPT.2008.918202

Interface

e/%¥ 4,

= Air
Incident Field Vel S .24

e JjSyz A2
—_— I
Transmitted Field

ay

Reore = 3.6

k-3

-5
e /"B,
-—
Reflected Field

Ryip= 1.0
Nejga = 3.24

Region 1 | Region 2
z=0

() (b)

Fig. 1. (a) Abrupt interface between two longitudinally homogeneous regions,
located at z = 0 and (b) optical waveguide-air facet.
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utilizes Padé approximants with branch cut rotation. To the
best of our knowledge, such formulation for the facet problem
has not been reported in the literature. Since the scheme is
noniterative, it significantly reduces the computational time to
obtain the numerical solution and it eliminates the need for a
preconditioner.

II. BACKGROUND

Consider the 2-D longitudinal discontinuity shown in
Fig. 1(a). Discretization of the 2-D wave equation in the trans-
verse direction z into M sample points, leads to an ordinary
matrix differential equation

d*V(z)
dz?

ST(z) =0 (1)

whose general solution is given by [1]-[5]

U(z) = IS A + e I5° B )

where the column vector W(z) contains the discretized electric
field E, for transverse-electric (TE) waves or the discretized
magnetic field H, for transverse-magnetic (TM) waves. The
matix §° = D, +k§ﬁ2, where the matrices D, and N rep-
resent the transverse second-order derivative operator and the
square of the refractive index, respectively, and k, is the free
space wave number. The first and second terms on the right side
of (2) represent the forward and backward fields, respectively.
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Continuity of the tangential field components at the interface
z = 0 leads to the following relations [1]-[5]:

(51 +T5)Br = (51 - U 5y)4; 3)
(S1+ U Sy)Ay =25, Ay “4)

where the matrix U I for the TE waves, I is the identity
matrix and U = N 1/N. N, o for the TM waves. Equations (3) and
(4) relate the reflected field B; and the transmitted field A5 to
the known incident field A;, respectively.

III. FORMULATION

In the following, (3) will be used to derive the proposed nonit-
erative formulation for the reflected part of the field. The square
root matrix operator S appearing in (3) is first approximated by
use of Padé approximants of the pth order and a rotated branch
cut complex scalar . This yields the following matrix relation:

H I-l—(l(p)

. I (P) _
= ([ es) 5
(p) (P ¥
=1 L4677 X i I +0 X
- P T+aPX —[L I—|—a(p)X —_
ZW%QH_—% -U A )
1

i T+ by i T+ b0,

where the square matrix X = vS — I and the coefficients a(p )
b,(f ) are Padé primes of the square root operator [9]. Rearranging

(5) leads to the following form:

[H (m;@x)‘li{l (1+a0'55)
+U ﬁ (T+a%3) ﬁ (T+o0'%2)

k

[ﬁ (T

k=1

Ay

(6)

— -1
T+bPX;)  and

By extracting the matrix product [[4_,
(T+b"X1), 6)

left-multiplying by the matrix product [T5_,
takes the following form:

[ﬁ (T+

[T (7% n (1+4%)

+ f[ (T+o%0) T 1i[ (T+ a“%)]

k=1 k
1

X lﬁ I+b,(f)X2)

k=1

By
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from which the following expression may be obtained:

Ay (N

ﬁ (T + b}f’)X_z)]

k=1
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x [ﬁ (T+ b,(f’)X_z)_ A5 (8)
k=1

Equation (8) represents an explicit expression that can be used
to directly calculate the reflected field By, based on Padé order
p. The transmitted field A, may then be obtained using A, =
Ay + B;. 1tis noteworthy to mention that for Padé order p, the
present formulation requires merely p + 1 sparse matrix-vector
divisions, resulting in much improved computational efficiency
when compared to available iterative algorithms [1]—[8] that
typically require 2p sparse matrix-vector divisions for each iter-
ation of the left hand side of (5). An additional advantage of the
present formulation is that it requires no preconditioner. This
leads to further improvement of the computational efficiency
and reduction in the complexity of the formulation.

IV. NUMERICAL RESULTS

The formulation developed in the previous section will be
demonstrated for both accuracy and efficiency by applying it
to the waveguide facet problem shown in Fig. 1(b). This same
waveguide facet problem has been analyzed previously [1]. The
waveguide core index 7core = 3.6, cladding index niclq =
3.24, and the waveguide facet is terminated by air. The oper-
ating wavelength A = 0.86 ym. A perfectly matched absorbing
layer has been used on either side of the computational window
in order to absorb the radiative field [11]. Fig. 2 shows the calcu-
lated fundamental TE and TM mode reflectivities as a function
of the core width w, for Padé orders 1, 2, and 3. It can be seen
that, for Padé order 3, the calculated results converge and are
in good agreement with the results reported in [1]. It should be
noted that, for lower values of Padé orders (p = 1, 2, the present
formulation overestimates the modal reflectivity values for TE
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Fig. 2. Calculated fundamental TE and TM mode facet reflectivities corre-
sponding to the waveguide air facet shown in Fig. 1(b), for Padé approximants
of different orders. The operating wavelength A = 0.86 pm.
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Fig. 3. CPU time as a function of the total number of discretization points cor-
responding to the waveguide air facet shown in Fig. 1(b). The core width and
the Padé order are fixed at w = 1 pum and p = 3, respectively.

polarized waves and underestimates the reflectivity values for
TM polarized waves. This is due to the relatively poor approxi-
mation of the square root matrix S when Padé approximants of
orders p < 3 are used.

The computational efficiency of the current approach is next
demonstrated. This is done by comparing the CPU time required
to solve (5) iteratively with the CPU time requirement of the
present approach. For this purpose, we utilize an efficient bicon-
jugate stabilized (Bi-CGSTAB) solver to iteratively solve (5) in
the same manner used in [8] which does not utilize a precondi-
tioner. However, the use of a preconditioner in the iterative ap-
proach generally results in a reduced number of iterations with
an overhead due to the resulting increase in the computational
time per iteration. Convergence of the iterative approach uti-
lizing the Bi-CGSTAB solver is assumed to be achieved when
the residual error becomes less than 10~7. For the purpose of
comparison, the waveguide core width is fixed at w = 1 pym

and the Padé order is set to p = 3. Fig. 3 shows the total CPU
time required (to calculate the modal reflectivity) as a function
of M (the total number of discretization points along the trans-
verse direction x). It is clearly seen that the proposed nonitera-
tive scheme requires much less CPU time compared with the it-
erative scheme, using the Bi-CGSTAB solver. For instance, con-
sider M = 1270. For the TE waves, the iterative algorithm re-
quires 12 iterations to converge, which correspond to a CPU run-
time of 1.2 s using a 1.8-GHz processor with 512-MB memory.
For the TM waves, 48 iterations are required by the iterative
scheme which correspond to a CPU runtime of 4.63 s. For the
TM waves, the Bi-CGSTAB solver requires a relatively large
number of iterations to converge, which is probably due to the
TM longitudinal boundary condition and the use of a nonpre-
conditioned system of equations. The corresponding CPU time
requirement of the noniterative scheme is approximately 0.06 s
for both TE and TM polarized waves. The rate of increase of
the CPU time requirement with respect to M is much lower for
the noniterative scheme when compared with the rate associated
with the iterative scheme.

V. CONCLUSION

An efficient noniterative formulation based on Padé approx-
imants for calculating the reflected and transmitted fields at an
abrupt waveguide discontinuity has been presented. The accu-
racy of the present method is assessed, showing good agreement
with previously published results. Moreover, the CPU runtime
requirement of the present scheme is much less than the corre-
sponding runtime required by the conventional iterative scheme.
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