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3-D Full-Vectorial Analysis of Strong Optical
Waveguide Discontinuities Using Pade Approximants

Husain A. Jamid and Md. Zahed M. Khan

Abstract—A full-vectorial 3-D numerical method applicable to
high-index contrast optical waveguide discontinuities is presented.
Rigorous treatment of the longitudinal boundary condition is
incorporated in the formulation. The square root of the charac-
teristic matrix is approximated using Padé approximants which
results in an efficient implementation. The biconjugate gradient
stabilized method is utilized to iteratively calculate the reflected
and transmitted fields. A preconditioner is proposed which results
in reduced number of iterations. The proposed method is applied
to various optical waveguide facets exhibiting strong transverse
and longitudinal refractive index discontinuities. In all cases, the
modal reflectivities of the fundamental TE-Like and TM-Like
modes are calculated for both the full-vectorial and the semi-
vectorial formulations. Significant difference in the calculated
modal reflectivity is seen between the full and semi-vectorial
models. The error in the power balance remains low in the
full-vectorial case irrespective of the waveguide dimensions. How-
ever, in the semi-vectorial case, the error in the power balance is
found to increase when the waveguide width is reduced.

Index Terms—Full-vectorial methods, Padé approximants, pre-
conditioner, 3-D waveguides, waveguide facet, waveguide disconti-
nuities.

I. INTRODUCTION

OPTICAL waveguide discontinuities have been the subject
of intense research interest in the past several years. These

discontinuities occur in a wide range of active and passive optical
devices. The previously reported work has been based on 2-D as
well as 3-D models of the waveguide discontinuity. Various nu-
merical methods have been applied in the analysis of waveguide
facets. This includes for instance, the finite-element method
(FEM) [1], [2], the finite-difference time-domain method
(FDTD) [3], [4], the free space radiation mode (FSRM) method
[5], the mode matching method (MMM) [6], [7], methods that
utilize radiation modes [8], [9], the method of lines (MoL)
[10]–[13], and the bidirectional beam propagation method (bidi-
rectional BPM) [14]–[23]. In recent years, the 2-D version of the
waveguide facet problem became trivial. This is largely due to
the development of various numerical methods, some of which
are very efficient, and the advent of fast processors. However,
extension of these methods from the 2-D to the 3-D model
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generally remains nontrivial. The major and common reason for
this difficulty is the resulting large and in some cases prohibitive
increase in processing time and memory requirements, espe-
cially for full-vector-based models. Another reason has to do
with the level of theoretical/numerical difficulties encountered
in extending a particular method to the 3-D case.

An efficient Bi-directional MoL-BPM based numerical
method which utilizes Padé approximants of the square root
operator has been reported in the literature for single [14]–[16]
and multiple [17]–[21] abrupt 2-D longitudinal waveguide
discontinuities. In its basic form, this method can correctly
account only for guided modes and does not account correctly
for evanescent modes. The use of branch cut rotation allows
this method to account for both guided and evanescent modes
simultaneously [15], [18]–[20]. It is well-known that highly
evanescent modes are excited at strong longitudinal discon-
tinuities. The ability of this method to account for highly
evanescent modes, with no extra numerical effort, makes it
equally suitable for the treatment of 3-D waveguide facets
with weak or strong index discontinuities. This is a highly
desirable property to have in a numerical method, especially
in the case of 3-D modeling. Some numerical methods lack
this feature. For instance, the MMM is known to be efficient
in the treatment of weak 3-D longitudinal discontinuities,
because in this case only guided modes need to be accounted
for. However, for strong 3-D longitudinal discontinuities, in
which case highly evanescent modes must be accounted for,
the MMM becomes prohibitively inefficient. The bidirectional
MoL-BPM has previously been applied to calculate the 3-D
waveguide facet reflectivity [22], [23]. While the earlier work
[22] does not utilize Padé approximants of the square root
operator, the later one [23] is based on Padé approximants with
complex coefficients. However, both of these reported works
have been based on the semi-vectorial formulation. To the best
of our knowledge, extension of the bidirectional MoL-BPM
that utilizes Padé approximants with branch cut rotation and
based on the more realistic 3-D full-vectorial model has not
been reported in the literature. Our own experience with this
problem suggests that the lack of reported work may be due
to difficulties encountered in accounting accurately for the
full-vectorial nature of the field and in the slow or lack of
convergence of the numerical solution.

One aim of this work is to present an approach for extending
the above-mentioned method to the 3-D full-vectorial rather
than the approximate semi-vectorial formulation. A rigorous
longitudinal boundary condition which accounts for the conti-
nuity of all transverse electric and magnetic field components
at an abrupt longitudinal discontinuity will also be utilized in
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the numerical method. In addition, a proposed preconditioner
will be presented which enhances the efficiency of the numer-
ical calculations by reducing the number of iterations required
for convergence. Finally, the 3-D facet reflectivity of a number
of waveguide structures exhibiting strong transverse and longi-
tudinal index discontinuities will be calculated by the proposed
method. The facet reflectivity results based on the semi-vectorial
and full-vectorial assumptions will then be compared to high-
light the difference in the predictions of these two models.

II. THEORY

The present work is based on the transverse magnetic field
formulation. This formulation has been chosen be-

cause it is known not to generate spurious modes [24], [25] and
also because the transverse magnetic field components and

are continuous at material discontinuities. It is also known
that the remaining electromagnetic components of the vectorial
field can be expressed in terms of the transverse magnetic field
components. The theoretical framework of the present approach
is as follows. First, the H-field formulation is developed, then
a suitable relationship that expresses the discretized transverse
electric field components in terms of the discretized transverse
magnetic field components is derived. Finally, the longitudinal
boundary condition is rigorously enforced, utilizing the conti-
nuity of all four transverse field components at an abrupt longi-
tudinal discontinuity.

A. Transverse H-Field Formulation

In a locally homogeneous medium with refractive index ,
the transverse magnetic field satisfies the 3-D wave equation

(1)

where represents either or and is the free
space wave number. Equation (1) is first discretized in the trans-
verse direction and then solved analytically in the lon-
gitudinal direction . A discrete form of (1) which accounts
for the transverse boundary conditions and transverse magnetic
field coupling at abrupt transverse discontinuities has been re-
ported in [25]. It results in the following matrix second-order
ordinary differential equation:

(2)

where . The column vectors and contain
the discretized values of and in the transverse direction,
respectively. For a computational window containing
samples in the and directions, respectively, the dimension
of each of the column vectors and is and thus
the dimension of is . The square matrix is given
by [25]

(3)

The dimension of each of the square submatrices , ,
, and is . The reader is referred to [25] for

details necessary for the construction of these four submatrices.
It is noteworthy to mention that the submatrices and
account for transverse magnetic field coupling. The general so-
lution of (2) is given by

(4)

The square matrices and account for the forward
and backward fields, respectively.

B. Transverse E-Field in Terms of Transverse H-Field

In order to rigorously satisfy the longitudinal boundary con-
dition, accurate expressions for the transverse electric field com-
ponents and (in terms of transverse magnetic field com-
ponents and ) are required. These expressions can easily
be derived from Maxwell’s equations, assuming a locally uni-
form medium, and are given by the following integral expres-
sions:

(5)

(6)

The longitudinal boundary condition requires continuity of the
transverse magnetic and transverse electric field components.
Equations (5) and (6) will be utilized to insure continuity of the
transverse electric field components at an abrupt longitudinal
discontinuity.

Prior to discretization of (5) and (6), they are first combined
into the following single relation:

(7)
where . Note that in (7), the order of the in-
tegral and differential operators have been interchanged, which
is allowable in a locally homogeneous medium. Discretization
of (7) in the transverse dimension leads to the following matrix
relation:

(8)

where is a column vector with the same
dimension as . The column vectors and con-
tain the discretized values of and , respectively. In addi-
tion, the dimension of each of the square matrices and is

. The matrices and respectively contain the
discrete values of the square of the refractive index and the dis-
crete values of the transverse differential operators. The integral
operator in (7) has been replaced with the square matrix operator

assuming a forward propagating field. For the backward
field, the same integral operator is replaced by . Next,
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Fig. 1. Incident, reflected, and transmitted fields at an abrupt longitudinal dis-
continuity located at z = 0.

using (2), the longitudinal differential operator in (8) is
replaced by which results in the following relation:

(9)

Although the longitudinal differential operator in (8)
does not explicitly contain coupling terms of the transverse
magnetic field components at transverse boundaries, it however
implicitly does. This can easily be seen by examining (2) and (3).
Therefore, the use of (2) to replace in (8) is necessary
to correctly account for transverse magnetic field coupling at
transverse boundaries. Although the two operators and
in (9) can in principle be applied separately, various numerical
experiments show that application of these operators separately
may lead to numerical instabilities. The origin of this instability
is due to the discontinuous nature of the spatial second derivates
of the transverse magnetic field components at transverse bound-
aries, which becomes more pronounced in the case of strong
transverse material discontinuities. These numerical instabilities
can be avoided by combining the matrix operators and into
the single operator , leading to the relationship

(10)

C. Formulation of the Longitudinal Boundary Condition

Fig. 1 shows an abrupt longitudinal boundary located at
. Region 1, contains the incident and reflected fields and re-

gion 2 contains the transmitted field. The incident, reflected and
transmitted magnetic fields are, respectively, ,

, and . Using (4) and (10)
and enforcing continuity of the transverse electric and magnetic
fields at results in the following relations:

(11)

(12)

Equations (11) and (12) are then used to relate the reflected
and transmitted magnetic fields to the incident

magnetic field

(13)

(14)

The square matrix in (13) and (14) is calculated using Padé
approximation of the square root operator [15], [16], [19], [20],
[23], [26]

(15)

where is the identity matrix, the square matrix
and is a complex scalar used for the purpose of branch-cut
rotation [15], [18], [19]. The parameter is Padé order, which
is taken to be 4 throughout this work, unless otherwise stated.
Closed form expressions for the Padé primes and corre-
sponding to the square root operator have been reported in [20].

D. Proposed Preconditioner

The well-known biconjugate gradient stabilized method
(Bi-CGSTAB) has been previously utilized to iteratively cal-
culate the reflected and transmitted fields at an abrupt 2-D
waveguide facet [16]. In the present work, the Bi-CGSTAB will
be used in tandem with (13) and (14) to iteratively calculate
the reflected and transmitted fields. However, these
equations need to be preconditioned when used in tandem
with Bi-CGSTAB, otherwise the performance of BI-CGSTAB
may deteriorate, leading to an unacceptably large number
of iterations or even failure to converge. Previously reported
preconditioners [16], [21], [23], [26] are not suitable for the
present formulation. This is due mainly to the full-vector nature
of the present problem. A proposed preconditioner suitable for
the present formulation is given by the following expression:

(16)

where and
. Equation (16) is based on first-order

Padé approximant of the square root operator and averaging of
the matrix operators. This equation gives a crude approxima-
tion to the inverse of the matrix
appearing on the left-hand side of (13) and (14). Derivation of
(16) will not be reported in this work. To obtain a precondi-
tioned system, the above preconditioner is left-multiplied by
(13) and (14).

Although (13) and (14) were obtained assuming a full-vecto-
rial formulation, these equations can also be applied to obtain
the results for the semi-vectorial model, as a special case. For
the semi-vectorial TM-like model, and are reduced to
and , respectively. The square matrices and each will
now have a reduced dimension of . The matrix in
this case does not contain any coupling terms. A similar arrange-
ment is applicable in the TE-like semi-vectorial case. Hence, in
this manner a unified numerical approach is available for the
semi-vectorial and full-vectorial formulations.

III. NUMERICAL RESULTS

The numerical method developed in the previous section will
be used to calculate the facet reflectivities of the three waveguide
structures shown in Fig. 2, where it is assumed that the trans-
mission medium is air. These waveguides are the buried wave-
guide Fig. 2(a), channel waveguide suspended in air Fig. 2(b)
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Fig. 2. Optical waveguide structures. (a) Buried waveguide. (b) Waveguide sus-
pended in air. (c) Channel waveguide.

and the raised channel waveguide Fig. 2(c). The fundamental
TE-Like (TE ) and TM-Like (TM ) modes are assumed to
be incident on the waveguide facet throughout this work. For
each of these waveguides, the modal facet reflectivity (the ratio
of the reflected modal power to incident modal power) will be
calculated based on both the semi-vectorial and full-vectorial
models. Comparisons of the results of these two models will
be presented in the following sections. A perfectly matched ab-
sorbing layer (PML) based on transformation of space to the
complex domain [27] has been incorporated in the numerical
procedure in order to absorb the radiative field.

A. Buried Waveguide

The core of the buried waveguide shown in Fig. 2(a) is as-
sumed to have the refractive index . The core is
surrounded on all sides by a cladding material with the refrac-
tive index . The core thickness is fixed to 0.4 m,
while the core width is varied. The operating wavelength is

m. Fig. 3 shows the variation of the modal reflectivity
as a function of . The curves show the calculated modal re-
flectivity based on the semi-vectorial and the full-vectorial for-
mulations for the fundamental TE-Like and TM-Like modes.
In all cases, it is seen that the modal reflectivity approaches the
2-D results when the waveguide becomes sufficiently wide. The
calculated semi-vectorial results are generally in good agree-
ment with those of reference [22], which are also based on a
semi-vectorial assumption. The calculated modal reflectivities
of the TE-Like and TM-Like modes based on the full-vectorial
formulation become substantially higher than the semi-vecto-
rial results when the waveguide width decreases. It is interesting

Fig. 3. Calculated TE-Like and TM-Like fundamental mode facet reflectivi-
ties corresponding to the waveguide structure shown in Fig. 2(a). The operating
wavelength is � = 1:30 �m.

Fig. 4. Calculated full-vectorial reflectivity of the fundamental TE-Like mode
as a function of (a) Padé order and (b) transverse mesh density.

to note that for a core width of m (square wave-
guide), the TE-Like and TM-Like modes become degenerate
giving identical values of the modal reflectivity.

Fig. 4 shows convergence of the calculated full-vectorial re-
flectivity of the fundamental TE-Like mode corresponding to

m for sufficiently large values of Padé order and
transverse mesh density. As seen in Fig. 4(a), the calculated
results start to converge at Padé order 3. The results shown
in Fig. 4(b) have been obtained using the same mesh density
in the and directions. For this particular case, the calcu-
lated modal reflectivity is seen to convergence at approximately
25 points/micrometer.

The calculated results shown in Fig. 3 corresponding to
m utilize a mesh density of 30 sample points per

micrometer in the and directions. This corresponds to a
transverse computational window (including the PML) with a
total of 82 sample points in both the and directions. For
the full-vectorial case, this results in a sparse square matrix
dimension of 13448. The full-vectorial modal reflectivity of
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Fig. 5. Calculated TE-Like and TM-Like fundamental mode facet reflectivi-
ties corresponding to the waveguide structure shown in Fig. 2(b). The operating
wavelength is � = 1:55 �m.

the fundamental TE-Like mode corresponding to m
has been calculated with and without preconditioning. For the
preconditioned system, Bi-CGSTAB requires nine iterations
to converge with a residual error of less than 10 and a
corresponding total CPU runtime of 366 s using a 2.4-GHz pro-
cessor. Without the preconditioner, the corresponding number
of iterations and CPU runtime are, respectively, 323 iterations
and 7217 s. The above calculations were also repeated for

m, using a computational window with 90 and
82 sample points in the and directions, respectively. In
this particular case, the preconditioned system requires ten
iterations and 507 s to converge. Without the preconditioner,
the corresponding numbers are 114 iterations and 3048 s. These
results clearly demonstrate that the proposed preconditioner
enhances the convergence rate of the numerical routine, which
results in substantial reduction of CPU time requirements.

B. Channel Waveguide Suspended in Air

This waveguide has been selected due to its large transverse
index discontinuity which presents a good test case for the
present numerical method. As shown in Fig. 2(b), the core
and cladding refractive indexes are assumed to be 3.6 and 1.0,
respectively. The core thickness and the operating wavelength
are fixed at 0.6 and 1.55 m, respectively.

The calculated modal reflectivities are shown in Fig. 5 as
a function of waveguide width . The modal reflectivities
based on the semi-vectorial and the full-vectorial models are
in good agreement with each other when the waveguide width
is relatively large. However, a large deviation of the prediction
of the two models occurs when the waveguide width becomes
small. For instance, based on full-vectorial model, the cal-
culated modal reflectivity of the TE-Like mode is 0.385, at

m (square waveguide). The corresponding value
based on the semi-vectorial model is 0.22 which is much lower
than the prediction of the full-vectorial model.

In order to ascertain the accuracy of our results, the incident
power , the reflected power , and the transmitted power

at the waveguide facet were calculated. The variation of

Fig. 6. Variation of the power balance parameter with waveguide width corre-
sponding to the waveguide structure shown in Fig. 2(b).

the power balance parameter, , with
the waveguide core width is shown in Fig. 6. In the full-vec-
torial case, remains low for all values of the waveguide
width. However in the semi-vectorial case, the power balance
parameter deteriorates when the waveguide width decreases
below about 1.5 m. The reason for the deterioration of the
semi-vectorial model as the waveguide becomes narrow is
straight forward to explain. It is well-known that when the
waveguide decreases in width, the minor transverse field (
for the TE-like polarization and for the TM-like polar-
ization) becomes significant. Thus, the semi-vectorial model
which ignores the minor field becomes inadequate and is
expected to give inaccurate results leading to the poor power
balance seen in Fig. 6.

In the case of the full-vectorial model which accounts for
the minor field, remains low ( 0.002) irrespective of the
waveguide width. It is noteworthy that throughout this work,

is maintained below 0.002 for all the reported full-vectorial
results.

C. Raised Channel Waveguide

In the case of the raised channel waveguide shown in
Fig. 2(c), the refractive indexes of the core and the substrate
are assumed to be 3.6 and 3.4, respectively. The superstrate
and the surrounding region is assumed to be air. The operating
wavelength and core thickness are fixed at m and

m, respectively. Fig. 7 shows the modal reflectivity
based on the semi-vectorial and full-vectorial models. The
modal reflectivity in this case exhibits a similar behavior to that
seen in the previous two waveguide structures. For a relatively
large waveguide width, the modal reflectivities of the semi-vec-
torial and the full-vectorial cases are in good agreement with
each other and they both tend to the results of the model.
In addition, the full-vectorial model is again seen to result in a
higher model reflectivity compared to the semi-vectorial model
when the waveguide width is reduced.

Fig. 8(a) and (b) shows the incident magnetic field compo-
nents and , respectively, of the fundamental TE-Like
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Fig. 7. Calculated TE-Like and TM-Like fundamental mode facet reflectivi-
ties corresponding to the waveguide structure shown in Fig. 2(c). The operating
wavelength is � = 1:55 �m.

Fig. 8. Magnitude of the incident and reflected field components of the fun-
damental TE-Like mode for the waveguide structure shown in Fig. 2(c) for
w = 4 �m at � = 1:55 �m.

mode corresponding to the raised channel waveguide core width
m. It is seen that the incident minor field component

is very small compared to the incident major field compo-
nent . The reflected transverse magnetic field components are
shown in Fig. 8(c) and (d). The reflected minor field component

remains low compared to the reflected major field compo-
nent . Thus, in this particular case, the minor field component
may be ignored and hence the semi-vectorial and full-vectorial
models should lead to similar values of the modal reflectivity.

Fig. 9(a)–(d) shows the corresponding field components of
the fundamental TE-Like mode when the core width is reduced
to m. It is interesting to note that in this case, upon
reflection; the minor field becomes substantial compared with
the major field, as seen in Fig. 9(c) and (d), respectively. This
result suggests an increase in the degree of polarization cross
coupling, upon reflection, when the waveguide width is reduced.
The semi-vectorial model, which ignores the presence of the

Fig. 9. Magnitude of the incident and reflected field components of the fun-
damental TE-Like mode for the waveguide structure shown in Fig. 2(c) for
w = 1 �m at � = 1:55 �m.

minor field, completely fails to account for this effect. This par-
tially explains the discrepancy between the full-vectorial and the
semi-vectorial results, seen in Fig. 7, when the waveguide width
is reduced.

IV. CONCLUSION

A numerical approach for the treatment of abrupt wave-
guide discontinuities has been demonstrated. This approach
is based on a 3-D full-vectorial formulation. It utilizes Padé
approximants of the square root operator with branch cut rota-
tion, which results in an efficient implementation. A rigorous
boundary condition that accounts for all field components has
been used in the numerical approach. In addition, a proposed
preconditioner has been presented to reduce the number of
iterations required for convergence of the numerical results. Ap-
plication of the proposed approach to various waveguide facets
exhibiting strong transverse and longitudinal discontinuities,
show a substantial, and in some cases a large difference in the
predictions of the semi-vectorial and the full-vectorial formula-
tions when the waveguide width is reduced. For all waveguide
structures studied, the predicted modal reflectivity based on the
semi-vectorial formulation is less than that predicted by the
full-vectorial model. Currently, work is being done to extend
the present approach to account for multiple 3-D waveguide
discontinuities based on the full-vectorial formulation.
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