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ABSTRACT
Of the many model structures that can represent a nonlin-
ear process effectively, the Hammerstein model is one such
model which has attracted a lot of attention. This paper
considers a real industrial problem of modelling a nonlinear
multivariable steam generating plant using the methods of
system identification. The work uses Hammerstein model
to model the plant from sampled data collected at Abbott
Power Plant in Campaign, IL. Neural networks and state-
space model are used to model the nonlinearities and the
dynamics of the system respectively. A recursive algorithm
is developed which makes use of Particle Swarm Optimi-
sation (PSO) and Subspace Identification Method (SIM) to
estimate the parameters of the nonlinear and linear parts
respectively. Validation results using computer simulation
are included at the end to demonstrate the good fit and con-
cordance of predicted outputs with actual data.
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1 Introduction

Effective and successful control of real life processes in the
industry is a meticulous and non-trivial task and requires a
model that is able to accurately predict the behaviour of the
process over complete operating range of the plant. One
method for obtaining mathematical models is by using first
principles, i.e. by considering the laws of physics in the in-
teraction of different components and materials during the
process. The other method which has proved instrumen-
tal in modelling real life processes is by using the methods
of system identification. Models obtained by this method
have provided meaningful engineering alternatives to phys-
ical modelling, and have been significantly helpful in mak-
ing model-based control system mathematically and prac-
tically tractable.

Boilers are industrial units, which are used for gener-
ating steam and hot water for industrial process and elec-
trical energy generation. They transmit heat by combustion
of fuel. Boiler operation is a complex operation in which
hot water must be delivered to a turbine at constant rate,

pressure and temperature in order to ascertain reliable op-
eration. Therefore, design of a proper control strategy for
a boiler is of significant importance in industrial environ-
ment. However, a necessary element for controller design
is a valid and accurate mathematical model.

The idea of creating mathematical representations of
physical processes from physical laws can sometimes be
very difficult, especially with nonlinear systems. Often,
this type of modelling approach ends up producing a large
number of complex equations that may or may not char-
acterise the system’s behaviour completely. Another way
to look at generating models of systems, is from the sys-
tem identification point of view which uses a system’s mea-
sured inputs and outputs to construct mathematical models,
in the absence of a priori knowledge of the system’s under-
lying structure. The application of such models is popu-
lar in situations where the key goal is output prediction for
control purposes.

This work focuses on identification of a steam gen-
erating plant in operation at Abbott Power Plant in Cam-
paign, IL using measured data. It is a dual fuel (oil/gas)
fired unit used for heating and generating electric power.
The plant has 4 inputs and 4 outputs which are described
in table 1. The plant is rated at 22.096 kg/s of steam at
22.4 MPa (325psi) of pressure. The plant has dynamics of
high order, as well as nonlinearities, instabilities, and time
delays [1, 2]. Figure 1 shows the structure of the plant.

Inputs Units

Fuel flow rate scaled 0-1
Air flow rate scaled 0-1

Reference level inches
Changes in steam demand scaled 0-1

Outputs Units

Drum pressure psi
Excess oxygen in exhaust gases %

Water level in the drum inches
Steam flow Kg/sec

Table 1
 Inputs and outputs of steam generating plant
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Figure 1. Industrial Steam Generation Plant

Apart from these measurable and deterministic out-
puts and inputs of the plant, there are certain uncertainties
which include fuel calorific value variations, heat transfer
coefficient variations, and distributed dynamics of steam
generation. The plant also has few constraints like actu-
ator constraints, unidirectional flow rates and drum flood-
ing. Sensor noise also makes the recorded plant outputs
noisy [2].

While models based on first principle and physical
laws are available in the literature, a limited work on steam
and boiler modelling based on system identification exists.
The objective of this work is to obtain a nonlinear model
of steam generator plant directly from test data using the
methods of system identification.

Throughout this paper, the following convention is
used. Variables in lower case represent scalar quantities.
Lower case bold variables represent vector quantities. Up-
per case bold variables represent matrices.

2 Multivariable Hammerstein identification

Successful identification requires a proper experimental de-
sign and choice of a proper model structure. Experimen-
tal design involves selection of experimental parameters
like sampling time and excitation signal. Several varieties
of model structures have been proposed and discussed in
the literature. Among these, block oriented models have
seen great interest among researchers. These are simple
models of interconnected blocks where each block repre-
sents either a linear dynamic filter or a static nonlinearity.
Block oriented models have successfully represented sev-
eral physical processes like distillation column [3, 4, 5], pH

control system [6, 7], and an electrical generator [8].
This work makes use of a popular block oriented

model known as the Hammerstein model. The Hammer-
stein model is composed of a nonlinear memoryless sub-
system followed by a linear dynamic one. The flexibility
of the Hammerstein model and its structure which sepa-
rates the nonlinearity from the easily realisable linear parts
makes it very popular for modelling physical processes.
Hammerstein model has been used to model several indus-
trial processes. These include nonlinear filters [9], con-
trol systems [10], biological systems [11], pH neutralisa-
tion process [12], a fan and plate process [13], water heater
[14], and electrical drive [15].

There are two main approaches used for identifica-
tion of Hammerstein models, parametric approach, and non
parametric approach. Parametric approach models the sys-
tem with a finite number of variables and the nonlinearity
is expressed as a linear combination of finite number of
known functions. Some examples of parametric identifi-
cation include, but are not limited to [16]-[21]. Nonpara-
metric approaches on the other hand represent the system
in terms of curves such as step response or bode diagram,
obtained from expansion of series like the Volterra series or
kernel regression. Significant nonparametric approaches to
identify Hammerstein models include [22]-[30].

However, processes having multiple number of inputs
and outputs pose several challenges to the task of success-
ful identification using input and output data. Most identifi-
cation techniques found in the literature fall under the cate-
gory of prediction error method (PEM), which estimates
system parameters by minimising one step ahead output
prediction error. And while methods based on PEM have
resulted in a well established theory for identification of
single input single output (SISO) systems, it faces inher-
ent problems for identification of systems having multiple
inputs and multiple outputs (MIMO) [31]. Identification
based on PEM is a complicated function of the system pa-
rameters, and often get stuck into local minima. PEMs
also need an initial estimate for a canonical parametrisation
model, i.e. models with minimum number of parameters,
which might not be easy to provide. It has been shown in
[32] that this minimal parametrisation can lead to several
problems. Moreover, PEM generally have to solve nonlin-
ear equations to estimate system parameters. PEM have
therefore inherent difficulties with MIMO system identifi-
cation. Today, more recent studies have shown that tech-
niques based on PEM result in a non-convex optimisation
problem in which global optimisation is not guaranteed
[33].

This problem can be solved by Identification of state-
space models using the methods of subspace identification.
Subspace identification methods (SIM) do not need to solve
nonlinear equations to find optimum solutions, rather these
methods use reliable numerical tools such as QR decompo-
sition and singular value decomposition (SVD) which lead
to numerically efficient implementations. Moreover, there
is no need for imposition of a canonical form on the system.



Subspace methods therefore do not suffer from the incon-
veniences encountered in applying PEM to MIMO system
identification. Hence, these methods are fast as well as ac-
curate [34].

This work uses state-space model to model the linear
dynamic subsystem of the Hammerstein model, and Ra-
dial basis function neural network (RBFNN) to estimate
the nonlinearity at the input.

3 Identification Structure

The RBFNN is trained using Particle Swarm Optimisa-
tion (PSO) technique, while parameters of the state-space
model are determined using the numerical algorithm for
state-space system identification (N4SID) proposed in [35,
32]. A novel heuristic algorithm is formulated which up-
dates the parameters of both these models one by one. The
input nonlinearities in a MIMO Hammerstein model can
either be combined together or separate [27, 36]. Figures 2
and 3 show two Hammerstein models, both having p inputs
and r outputs. In the first system, each nonlinearity is sepa-
rate from the other. This Hammerstein system has p inputs,
p intermediate variables, and r outputs at every sampled
time instant t. Every nonlinearity is therefore approximated
by a separate RBF network. Thus, the j th nonlinear output
vj(t) depends only on uj(t). Given that a separate set of
weights

wj = [w1j w2j · · ·wnj ], (1)

and a separate basis vector

φj(t) = [φ‖uj(t) − c1‖ · · ·φ‖uj(t) − cn‖] (2)

exist for that nonlinearity, the output of the j th nonlinear
function is given by

vj(t) = wjφ
T
j (t), (3)

where n is the number of neurons in the hidden layer, c i

is the centre for the ith neuron of that layer, φ is the radial
basis function, and ‖.‖ denotes norm.

Figure 2. Hammerstein model with separate nonlinearities

In the second Hammerstein system, the nonlinearity
is combined at the input which reflects the effect of all
the inputs on every output of the nonlinear function. Such

Figure 3. Hammerstein model with combined nonlineari-
ties

a Hammerstein system has p inputs, m intermediate vari-
ables, and r outputs at every sampled time instant t. Un-
like the system with separate nonlinearities, a single RBF
network approximates the nonlinear block. Thus while all
nonlinear outputs have a unique set of weights, they have a
single basis function vector defined by

φ(t) = [φ‖u(t) − c1‖ · · ·φ‖u(t) − cn‖]. (4)

The jth nonlinear output vj(t) is defined as:

vj(t) = wjφ
T (t). (5)

Notice that for this case, the input to the RBF network at
time instant t is the vector u(t) ε � p×1 instead of a scalar
value. Vector ci ε � p×1 is the centre vector for ith neuron.
The RBF neural network takes the system inputs u(t) and
transforms it to intermediate variables v(t). The centres of
the RBFNN are kept fixed, and thus, the only adjustable pa-
rameters in the RBFNN are the weights of its output layer.
This set of intermediate variable, v(t) is fed to the linear
subsystem. Considering p equal to m, the output equations
for the linear subsystem for both the cases are given by

x(t + 1) = Ax(t) + Bv(t) + s(t)
y(t) = Cx(t) + Dv(t) + z(t), (6)

where v(t) ε � p×1 and y(t) ε � r×1 are the vectors for p
inputs and r outputs of the linear subsystem observed at
discrete time instant t. Vector z(t) ε � r×1 is called the
measurement noise and s(t) ε � n×1 is called the process
noise. Both z(t) and s(t) are zero mean, white noise se-
quences, which have covariance matrices given by

E

[ (
s
z

) (
sT zT

) ]
=

[
Q S
ST R

]
δpq, (7)

where E denotes expected value and δpq denotes kronecker
delta which is explained in [35, 32].

If y(t) = [y1(t) · · · yr(t)]T denotes the vec-
tor for original outputs of the sampled data, ŷ(t) =
[ŷ1(t) · · · ŷr(t)]T denotes the vector for the outputs of the
estimated system, then e(t) = y(t) − ŷ(t) denotes error
vector, then a cost function based on the square of output



error is sought to be minimized. This cost function is given
by

I =
l∑

t=1

eT (t)e(t), (8)

where l denotes total number of data points.

4 Training Algorithm

4.1 Particle Swarm Optimisation

PSO is a heuristic search optimisation algorithm which
works on the principle of swarm intelligence [37]. It im-
itates the behaviour of animals in a swarm which work col-
laboratively to find their food or habitat. In PSO the search
is directed, as every particle position is updated in the di-
rection of the optimal solution. PSO is robust and fast and
can solve most complex and nonlinear problems. It gen-
erates better solutions within lesser time as compared to
other evolutionary algorithm (EA) based methods and ex-
hibits stable convergence characteristics. In this work, PSO
is used to train the RBFNN. Each particle of the swarm rep-
resents a candidate value for the weight of RBFNN output
layer. The fitness of the particles is the reciprocal of the
cost index given in equation 8. Hence, the smaller the sum
of output errors, the more fit are the particles. Based on this
principle, PSO updates the position of all the particles mov-
ing towards an optimal solution for the weights of RBFNN.

Each particle of the swarm is represented in a D-
dimensional space with

Xi = [xi1 xi2 · · ·xiD] (9)

Particle best positions providing the most optimum solu-
tions are given as

Pi = [pi1 pi2 · · · piD] (10)

The change in the position of each particle, or the velocity
of each particle is given by

Vi = [vi1 vi2 · · · viD] (11)

The velocity and position updating of the particles is the
core of PSO, and involves some very important parameters
like the constriction factor, inertia weight, and cognitive
and social parameters.

Vi(n + 1) = χ[wVi(n) + c1 ∗ ri1(n) ∗ {Pi(n) − Xi(n)}
+c2 ∗ ri2(n) ∗ {Pg(n) − Xi(n)}] (12)

Xi(n + 1) = Xi(n) + x ∗ Vi(n + 1) (13)

In the above equations, c1 and c2 are the cognitive and
social parameters respectively, and are both positive con-
stants. w is the inertia weight and χ is called the constric-
tion factor. Both of these parameters were later added to
the original PSO algorithm in [38] to overcome the ineffi-
cient behaviour of the algorithm, especially in the neigh-
bourhood of global minimum.

4.1.1 Conginitive and Social parameters

The value of c1 signifies a particle’s attraction to a local
best position based on its past experiences. The value of
c2 determines the swarm’s attraction towards a global best
position. The values of c1 and c2 are adjusted after several
tries such that c1 is kept slightly larger than c2 but with
c1 + c2 ≤ 4 as proposed in recent literature [39]. This
enables the swarm to trust local best solutions and move
slowly towards a global best.

4.1.2 Constriction factor

The value of the constriction factor is kept close to 1. This
enables slow convergence with better exploration.

4.1.3 Number of particles and swarm size

Assuming separate nonlinearities at the input, a set of 4
neurons is selected at each input to estimate the nonlinear-
ity. This accounts to 16 neurons for all the inputs, and thus
16 synaptic weights. The number of particles is therefore
taken 16. A swarm population size of 50 is selected and
the optimisation process is run for 100 iterations. These
parameters provide excellent learning for the RBFNN.

4.2 Subspace numerical algorithm

The proposed algorithm makes use of N4SID numerical
algorithm for estimation of state-space matrices. The al-
gorithm was proposed in [32, 35]. The objective of the
algorithm is to determine the order n of the system, and
the system matrices A ε � n×n, B ε � n×p, C ε � r×n,
D ε � r×p, Q ε � n×n, R ε � r×r, and S ε � n×r, and
the Kalman gain matrix K (if required), without any prior
knowledge of the structure of the system. This is achieved
in two steps

• Determination of model order n and a Kalman filter
state sequence estimates
x̂i, x̂i+1, · · · x̂i+j by first projecting row spaces
of data block Hankel matrices, and then applying a
singular value decomposition.

• Solution of a least squares problem to obtain the state
space matrices. Mathematical details of the these
steps follow in [32, 35].

4.3 PSO/Subspace hybrid algorithm

Based on minimisation of output error given in equation
8, the hybrid PSO/Subspace identification algorithm is de-
fined below

1. Estimate state-space matrices A, B, C and D from
original non linear data using N4SID (initial estimate).



Figure 4. PSO/Subspace algorithm

2. Initialise PSO with random population of possible
RBFNN weights.

3. Keeping the state-space matrices fixed, obtain a global
best set of weights which minimises the cost index
given in equation 8.

4. Estimate set of RNFNN outputs v once optimum
weights are obtained.

5. Estimate state space matrices A, B, C and D from
the new set of neural network outputs v and original
system outputs y. This estimate of state-space model
would be an improvement on the previous estimate.

6. Regenerate output ŷ from the new estimate of the
complete system.

7. If a minimum goal of cost function is not achieved,
keep repeating steps 2 to 6.

5 Simulation Results

A data set for the plant containing 9600 samples obtained at
a sampling rate 3 seconds is taken from [40]. Out of these,
5000 samples are used for training, while 4600 samples are
left aside for validation. The centres of the RBFNNs are
uniformly distributed in the data intervals. PSO/Subspace
algorithm identifies the boiler plant. The normalised mean
squared error at the output converges to a final minimum
value within a few iterations of the algorithm.

The dynamics of the system are identified by an 8 th

order state-space model. The obtained model is simulated
with the remaining 4600 samples of the data set. The re-
sults show remarkable concordance with actual measured
data. Figures 5 and 6 show Drum pressure and Oxygen
level predicted with fair accuracy. Figures 7 and 8 show

Drum water level and Steam production rate. The accuracy
of prediction in simulation is encouraging.

6 Conclusion

The identified model has accurately predicted process out-
puts making it highly reliable for predictive controller de-
sign. Combined advantages of subspace methods and abil-
ity of particle swarm to obtain global minimum have effec-
tively estimated a mathematical model that caters to system
dynamics as well as plant nonlinearities using data from the
plant which contained disturbances as well as noise.
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Figure 5. Plot of simulated and measured drum pressure
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Figure 6. Plot of simulated and measured excess oxygen
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Figure 7. Plot of simulated and actual drum water level
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Figure 8. Plot of simulated and measured output steam




