EE 407 Microwave Engineering

Lecture 5 to 7

Impedance Transformers and Smith chart

Dr. Sheikh Sharif Iqbal

References: Text and reference books

Impedance Transformers: (for $\alpha=0$ and $Z_0 \& Z_L$ are real no's) • For T.L. with $\underline{l=\lambda/4}$ has: $\beta l=(2\pi/\lambda)(\lambda/2)=\pi/2$ & $\tan \pi/2=\infty$

$$Z_{in} = Z_0 \frac{Z_L + Z_0 \tan \beta 1}{Z_0 + Z_L \tan \beta 1} = Z_0 \frac{\frac{Z_L}{\tan \beta 1} + Z_0}{\frac{Z_0}{\tan \beta 1} + Z_L} = \frac{Z_0^2}{Z_L} \qquad Thus, \quad \begin{cases} Z_0 = \sqrt{Z_{in} Z_L}}{\frac{Z_0}{Z_{in}}} = \frac{1}{\overline{Z_L}} \\ \frac{Z_0}{\overline{Z_{in}}} = \frac{1}{\overline{Z_L}} \end{cases}$$

This transformer is used impedance inversion and matching purposes.

• For T.L. with $\underline{l=\lambda/2}$: $\beta l=(2\pi/\lambda)(\lambda/2)=\pi$; $Z_{in}=Z_0\frac{Z_L+Z_0\tan\beta l}{Z_0+Z_L\tan\beta l}=Z_L$

This transformer is used impedance point extension and matching.

- For T.L. with $Z_L = 0$ or S/C; we know that $Z_{in} = jZ_0 \tan\beta l$ or $\underline{X}_{in} = \tan\beta l$;
- Here if $0 < l < \lambda/4$, $X_{in} = >'+'$ and Input impedance (Z_{in}) is Inductive
- But if $\lambda/4 < l < \lambda/2$, $X_{in} =>$ '-' and Input impedance (Z_{in}) is Capacitive

- •<u>T.L. with $Z_{\underline{L}} = \infty$ or $Y_{\underline{L}} = 0$; we know that $Y_{in} = \mathbf{j} Y_0 \tan\beta l$ or $B_{in} = \tan\beta l$;</u>
- Here if $0 < l < \lambda/4$, $B_{in} =>'+'$ and Input impedance (Z_{in}) is Capacitive
- But if $\lambda/4 < l < \lambda/2$, $B_{in} = >'-'$ and Input impedance (Z_{in}) is Inductive

• These O/C or S/C lines can be used as STUBS for matching TL's

- Smith Chart and its Applications: (Invented by P.Smith in 1939) • 'Γ' to 'Z or Y' converter; Simplifies analysis of complex TL or LE prob $\Gamma = \frac{Z - Z_0}{Z + Z_0} = \frac{\overline{Z_N} - 1}{\overline{Z_N} + 1} \quad \text{or} \quad U + jV = \frac{r + jx - 1}{r + jx + 1} \qquad as, \quad \begin{cases} \Gamma = U + jV \\ \overline{Z_N} = r + jx \end{cases}$ $U = \frac{r^{2} - 1 + x^{2}}{(r+1)^{2} + x^{2}} \text{ and } V = \frac{2x}{(r+1)^{2} + x^{2}}$ • <u>eq.1</u>:eliminating **x**; $\left(U - \frac{r}{r+1}\right)^{2} + V^{2} = \left(\frac{1}{r+1}\right)^{2}$ • <u>eq.2</u>: eliminating \mathbf{r} ; $(U - 1)^2 + \left(V - \frac{1}{x}\right)^2 = \left(\frac{1}{x}\right)^2 \longrightarrow \left(U_0', V_0'\right) = \left(1, \frac{1}{x}\right); R' = \left(\frac{1}{|x|}\right)$ • Eq.1 \Rightarrow Resistance circles 1,1 x = 2r = 0{concentric at (U_0, V_0) & radius=R}
 - (Note: \uparrow 'r' $\Leftrightarrow \downarrow$ 'circle size')
- Eq.2 \Rightarrow Reactance circles {concentric at (U'_0,V'_0) & radius=R'} (Note: \uparrow 'x' \Leftrightarrow \downarrow 'circle size')

Compressed Smith Chart :

- Plotting two families of circles for all values for (*r*,*x*) creates the entire smithchart: "Compressed"
- Applies to active & passive ckts
- Impractical and seldom used

Standard Smith Chart :

- If two families of circles are plotted only for r≥0: "Standard"
- If ' $x \ge 0$ ' \Rightarrow Positive reactance
- If 'x ≤ 0 ' \Rightarrow Negative reactance
- Heavily used for Passive ckts.
- Ref. Corff. Plane with ' $|\Gamma| \leq 1$ '

Determine *VSWR* from known Z_L :

- **1.** Plot the normalized impedance $(Z_L)_N$
- **2.** Draw constant *VSWR* circle through $(Z_L)_N$
 - From the intersection of circle and left-hand horizontal axis, drop a line on the bottom scale to read VSWR value
 - Or use intersection of the circle & $\theta=0$ axis

Determine Y_N from known Z_N : (vice versa)

1. Plot the normalized impedance

 $[(Z)_N = Z/Z_0)]$ on the standard Smith chart.

- **2.** Draw constant *VSWR* circle through $(Z)_N$
- **3.** Draw a line from $(Z)_N$ via the center of the of constant *VSWR* circle
- **4.** $(Y)_N$ is the interaction of the line and circle
- * Prove this using relation between (Z)_N & $|\Gamma_N|$

Determine Z_{IN} from known Z_L: (or vice versa)
1. Plot the normalized load impedance

[(Z_L)_N= Z_L/Z₀)] on the standard Smith chart.

2. Draw constant VSWR circle through (Z_L)_N
3. From (Z_L)_N, move to a distance "l/λ"

'toward generator' on constant VSWR circle

4. Read the normalized input impedance value

[(Z_{IN})_N = Z_{IN}/Z₀)] from the smith chart.

Determine Z_{IN} from known Γ: (for |Γ_{IN}| ≤ 1) **1.** For any point of TL. plot Γ_{IN} = |Γ_{IN}| $e^{j\theta}$,

- Use the bottom scale to plot $|\Gamma_{IN}|$ value
- Use circular scale to pot the angle ' θ '.
- 2. Read the normalized input impedance value $(Z_{IN})_N$ from the smith chart.
- * Conversely find ' Γ ' from known ' Z_{IN} '

Examples of how to use the smith chart: (assume $Z_0=50 \Omega$)

To plot the known impedance of the load: (say, $Z_0 = 50 \Omega$, $Z_L = 50+j100 \Omega$)

- 1. Normalizing the load impedance yields $(Z_L)_N = 1+j2.0 \Omega$.
- 2. Set chart with the central diameter horizontal & point zero on the left. Start from 'r = 0' on the central diameter & move to point 'r = 1.0' on the right.
- 3. Follow (r=1.0) resistance circle upward and locate its intersection with reactance circle 'j2.0'. Point of intersection is $(Z_L)_N = 1+j2.0 \Omega$.

To <u>find</u> the VSWR of the transmission line: (assume $Z_0=50 \Omega$, $Z_L=100-j50 \Omega$)

1. Plot $(Z_L)_N$. Draw <u>VSWR circle</u>, with center at point (1,0), through the point $(Z_L)_N$. Read point of intersection of the circle with the horizontal diameter $(\theta=0 \text{ axis})$ on the right of the Chart center. This gives the VSWR as 2.6

To <u>find</u> the admittance (\mathbf{Y}_{L}) of the load: (assume \mathbf{Z}_{0} =50 Ω , \mathbf{Z}_{L} =150-j75 Ω)

1. Plot $(Z_L)_N$. Draw the VSWR circle. From point $(Z_L)_N$, draw a diameter through the center of the chart to intersect with the circle again.

2. Point of intersection is $(Y_L)_N = 0.27 + j0.14 \Omega = 1/(Z_L)_N$. Now $Y_L = (Y_L)_N / Z_0$

To <u>find</u> the load Reflection coefficient (Γ_L): (assume $Z_0=50 \Omega$, $Z_L=100+j75 \Omega$)

- 1. Plot $(Z_L)_N$. Draw the VSWR circle. Also draw a radial line through $(Z_L)_N$.
- 2. Use the scale below the smith chart (*for Ref. Coeff. E or I*) to read the value of the intersection of the circle and central diameter. Thus, $|\Gamma| = 0.535$
- 3. The intersection of the radial line & phase angle circle, gives; $\theta = 30^{\circ}$
- To <u>find</u> input impedance (Z_{IN}) , if $l=0.25\lambda$ of T.L.: $(Z_0=50 \Omega, Z_L=150-j75 \Omega)$
- 1. Plot $(Z_L)_N$. Draw VSWR circle. From point $(Z_L)_N$ move along the VSWR circle by a distance of '0.25', using wavelength circle of '*towards generator*
- 2. From the arrived point, draw a radial line towards the center. Intersection of this radial line and the VSWR circle gives, $(Z_{IN})_N = 0.27 + j0.14 \Omega$?.

Problem: A 600 Ω loss-free transmission line is 105 ft long & used to connect a 200 MHz transmitter, having an output impedance of $600 \angle 0^{\circ} \Omega$, to an antenna with a terminal impedance of $700 \angle -72^{\circ}$. Using smith chart determine;

(a) the VSWR on the antenna feeder.

- (b) the voltage reflection coefficient at the antenna terminal.
- (c) the impedance presented at the transmitter terminal