EE 407
 Microwave Engineering

Lecture 5 to 7

Impedance Transformers and Smith chart

Dr. Sheikh Sharif Iqbal

References: Text and reference books

- Elec. length, $\theta=\beta \mathbf{I}$ where,
1 = physical length $\beta=$ phase constant

Impedance Transformers: (for $\alpha=0$ and $Z_{0} \& Z_{L}$ are real no's)

- For T.L. with $\underline{l=\lambda / 4}$ has: $\beta 1=(2 \pi / \lambda)(\lambda / 2)=\pi / 2 \quad \& \quad \tan \pi / 2=\infty$

$$
Z_{\text {in }}=Z_{0} \frac{Z_{L}+Z_{0} \tan \beta 1}{Z_{0}+Z_{L} \tan \beta 1}=Z_{0} \frac{\frac{Z_{L}}{\tan \beta 1}+Z_{0}}{\frac{Z_{0}}{\tan \beta 1}+Z_{L}}=\frac{Z_{0}^{2}}{Z_{L}} \quad \text { Thus, }\left\{\begin{array}{c}
Z_{0}=\sqrt{Z_{\text {in }} Z_{L}} \\
\overline{Z_{\text {in }}}=\frac{1}{\overline{Z_{L}}}
\end{array}\right.
$$

This transformer is used impedance inversion and matching purposes.

- For T.L. with $\underline{\underline{1}=\lambda / 2}: \quad \beta 1=(2 \pi / \lambda)(\lambda / 2)=\pi ; \quad Z_{\text {in }}=Z_{0} \frac{Z_{L}+Z_{0} \tan \beta 1}{Z_{0}+Z_{L} \tan \beta 1}=Z_{L}$

This transformer is used impedance point extension and matching.

- For T.L. with $\mathrm{Z}_{\underline{L}}=0$ or S / C; we know that $\mathrm{Z}_{\text {in }}=j \mathrm{Z}_{0} \tan \beta l$ or $\underline{\mathbf{X}}_{\underline{i n}}=\tan \beta l$;
- Here if $0<l<\lambda / 4, X_{\text {in }}=>^{\prime}+$ ' and Input impedance $\left(\mathrm{Z}_{\text {in }}\right)$ is Inductive
- But if $\lambda / 4<l<\lambda / 2, \mathrm{X}_{\mathrm{in}}={ }^{\prime}$-' and Input impedance $\left(\mathrm{Z}_{\mathrm{in}}\right)$ is Capacitive

-T.L. with $\mathrm{Z}_{\underline{L}}=\infty$ or $\mathrm{Y}_{\underline{L}}=0$; we know that $\mathrm{Y}_{\text {in }}=\mathrm{j} \mathrm{Y}_{0} \tan \beta l$ or $\mathrm{B}_{\text {in }}=\tan \beta l$;
- Here if $0<l<\lambda / 4, \mathrm{~B}_{\text {in }}=$ ' $^{\prime}$ ' and Input impedance $\left(\mathrm{Z}_{\text {in }}\right)$ is Capacitive
- But if $\lambda / 4<l<\lambda / 2, \mathrm{~B}_{\text {in }}={ }^{\prime}$ '-' and Input impedance $\left(\mathrm{Z}_{\text {in }}\right)$ is Inductive

- These O/C or S/C lines can be used as STUBS for matching TL's

Smith Chart and its Applications: (Invented by P.Smith in 1939)

- ' Γ ' to 'Z or Y ' converter; Simplifies analysis of complex TL or LE prob

$$
\begin{aligned}
& \Gamma=\frac{Z-Z_{0}}{Z+Z_{0}}=\frac{\overline{Z_{N}}-1}{\overline{Z_{N}}+1} \quad \text { or } \quad U+j V=\frac{r+j x-1}{r+j x+1} \quad a s,\left\{\begin{array}{l}
\Gamma=U+j V \\
\overline{Z_{N}}=r+j x
\end{array}\right. \\
& \text { - eq. } 1: \text { eliminating } \boldsymbol{x} ;\left(U-\frac{r}{r+1}\right)^{2}+V^{2}=\left(\frac{1}{r+1}\right)^{2} \underbrace{}_{\text {radius }} R=\left(\frac{1}{r+1}\right)
\end{aligned}
$$

- eq.2: eliminating $\boldsymbol{r} ;(U-1)^{2}+\left(V-\frac{1}{x}\right)^{2}=\left(\frac{1}{x}\right)^{2} \rightarrow\left(U_{0}^{\prime}, V_{0}^{\prime}\right)=\left(1, \frac{1}{x}\right) ; R^{\prime}=\left(\frac{1}{|x|}\right)$
- Eq. $1 \Rightarrow$ Resistance circles \{concentric at $\left(\mathrm{U}_{0}, \mathrm{~V}_{0}\right)$ \& radius $=\mathrm{R}$ \} (Note: \uparrow ' r ' $\Leftrightarrow \downarrow$ 'circle size')
- Eq. $2 \Rightarrow$ Reactance circles \{concentric at ($\mathrm{U}^{\prime}{ }_{0}, \mathrm{~V}^{\prime}{ }_{0}$) \& radius=R'\} (Note: \uparrow ' x ' $\Leftrightarrow \downarrow$ 'circle size')

RESISTANCE CIRCLES

Compressed Smith Chart :

- Plotting two families of circles for all values for (r, x) creates the entire smithchart: "Compressed"
- Applies to active \& passive ckts
- Impractical and seldom used

Standard Smith Chart :

- If two families of circles are plotted only for $r \geq 0$: "Standard"
- If ' $x \geq 0$ ' \Rightarrow Positive reactance
- If ' $x \leq 0$ ' \Rightarrow Negative reactance
- Heavily used for Passive ckts.
- Ref. Corff. Plane with ' $|\Gamma| \leq 1$ '

Determine VSWR from known $Z_{\underline{L}}$:

1. Plot the normalized impedance $\left(\mathrm{Z}_{\mathrm{L}}\right)_{\mathrm{N}}$
2. Draw constant $V S W R$ circle through $\left(\mathrm{Z}_{\mathrm{L}}\right)_{\mathrm{N}}$

- From the intersection of circle and left-hand horizontal axis, drop a line on the bottom scale to read VSWR value
- Or use intersection of the circle \& $\theta=0$ axis

Determine $Y_{\underline{N}}$ from known $Z_{\underline{N}}$: (vice versa)

1. Plot the normalized impedance $\left.\left[(Z)_{N}=Z / Z_{0}\right)\right]$ on the standard Smith chart.
2. Draw constant VSWR circle through $(\mathrm{Z})_{\mathrm{N}}$
3. Draw a line from $(Z)_{N}$ via the center of the of constant VSWR circle
4. $(\mathrm{Y})_{\mathrm{N}}$ is the interaction of the line and circle

* Prove this using relation between $(\mathrm{Z})_{\mathrm{N}} \&\left|\Gamma_{\underline{N}}\right|$

Determine $Z_{\text {IN }}$ from known $Z_{\underline{L}}$: (or vice versa)

1. Plot the normalized load impedance
$\left.\left[\left(Z_{L}\right)_{\mathrm{N}}=\mathrm{Z}_{\mathrm{L}} / \mathrm{Z}_{0}\right)\right]$ on the standard Smith chart.
2. Draw constant VSWR circle through $\left(\mathrm{Z}_{\mathrm{L}}\right)_{\mathrm{N}}$
3. From $\left(Z_{L}\right)_{N}$, move to a distance " I / λ " 'toward generator' on constant VSWR circle
4. Read the normalized input impedance value $\left.\left[\left(Z_{\text {IN }}\right)_{\mathrm{N}}=\mathrm{Z}_{\mathrm{IN}} / \mathrm{Z}_{0}\right)\right]$ from the smith chart.

Determine $Z_{\text {IN }}$ from known Γ : (for $\left.\left|\Gamma_{\text {IN }}\right| \leq 1\right)$

1. For any point of TL. plot $\Gamma_{\underline{\mathrm{IN}}}=\left|\Gamma_{\underline{I N}}\right| e^{j \theta}$,

- Use the bottom scale to plot $\left|\Gamma_{\underline{I N}}\right|$ value
- Use circular scale to pot the angle ' θ '.

2. Read the normalized input impedance value $\left(\mathrm{Z}_{\text {IN }}\right)_{\mathrm{N}}$ from the smith chart.

* Conversely find ' Γ ' from known ' $Z_{\text {IN }}$ '

Examples of how to use the smith chart: (assume $\mathbf{Z}_{0}=50 \Omega$)
To plot the known impedance of the load: (say, $\mathrm{Z}_{\mathbf{0}}=\mathbf{5 0} \Omega, \mathrm{Z}_{\mathrm{L}}=\mathbf{5 0 + j} 100 \Omega$)

1. Normalizing the load impedance yields $\left(Z_{L}\right)_{N}=1+j 2.0 \Omega$.
2. Set chart with the central diameter horizontal \& point zero on the left. Start from ' $r=0$ ' on the central diameter $\&$ move to point ' $r=1.0$ ' on the right.
3. Follow ($r=1.0$) resistance circle upward and locate its intersection with reactance circle ' j 2.0 '. Point of intersection is $\left(\mathrm{Z}_{\mathrm{L}}\right)_{\mathrm{N}}=1+\mathrm{j} 2.0 \Omega$.

To find the VSWR of the transmission line: (assume $\mathbf{Z}_{\mathbf{0}}=\mathbf{5 0} \Omega, \mathrm{Z}_{\mathrm{L}}=\mathbf{1 0 0}-\mathrm{j} 50 \Omega$)

1. Plot $\left(Z_{L}\right)_{\mathrm{N}}$. Draw VSWR circle, with center at point $(1,0)$, through the point $\left(\mathrm{Z}_{\mathrm{L}}\right)_{\mathrm{N}}$. Read point of intersection of the circle with the horizontal diameter ($\theta=0$ axis) on the right of the Chart center. This gives the VSWR as 2.6

To find the admittance $\left(\mathrm{Y}_{\mathrm{L}}\right)$ of the load: (assume $\mathbf{Z}_{\mathbf{0}}=\mathbf{5 0} \Omega, \mathrm{Z}_{\mathrm{L}}=\mathbf{1 5 0} \mathbf{- j 7 5} \Omega$)

1. Plot $\left(Z_{L}\right)_{N}$. Draw the VSWR circle. From point $\left(Z_{L}\right)_{N}$, draw a diameter through the center of the chart to intersect with the circle again.
2. Point of intersection is $\left(\mathrm{Y}_{\mathrm{L}}\right)_{\mathrm{N}}=0.27+j 0.14 \Omega=1 /\left(\mathrm{Z}_{\mathrm{L}}\right)_{\mathrm{N}}$. Now $\mathrm{Y}_{\mathrm{L}}=\left(\mathrm{Y}_{\mathrm{L}}\right)_{\mathrm{N}} / \mathrm{Z}_{0}$

To find the load Reflection coefficient $\left(\Gamma_{L}\right)$: (assume $\left.Z_{0}=50 \Omega, Z_{L}=100+j 75 \Omega\right)$

1. Plot $\left(Z_{L}\right)_{N}$. Draw the VSWR circle. Also draw a radial line through $\left(Z_{L}\right)_{N}$.
2. Use the scale below the smith chart (for Ref. Coeff. E or I) to read the value of the intersection of the circle and central diameter. Thus, $|\Gamma|=0.535$
3. The intersection of the radial line $\&$ phase angle circle, gives; $\theta=30^{\circ}$

To find imput impedance $\left(Z_{I N}\right)$, if $l=0.25 \lambda$ of $T . L . L\left(Z_{0}=50 \Omega, Z_{L}=150-j 75 \Omega\right)$

1. Plot $\left(Z_{L}\right)_{N}$. Draw VSWR circle. From point $\left(Z_{L}\right)_{N}$ move along the VSWR circle by a distance of ' 0.25 ', using wavelength circle of 'towards generator
2. From the arrived point, draw a radial line towards the center. Intersection of this radial line and the VSWR circle gives, $\left(\mathrm{Z}_{\mathrm{IN}}\right)_{\mathrm{N}}=0.27+\mathrm{j} 0.14 \Omega ?$
Problem: A 600Ω loss-free transmission line is 105 ft long \& used to connect a 200 MHz transmitter, having an output impedance of $600 \angle 0^{\circ} \Omega$, to an antenna with a terminal impedance of $700 \angle-72^{\circ}$. Using smith chart determine;
(a) the VSWR on the antenna feeder.
(b) the voltage reflection coefficient at the antenna terminal.
(c) the impedance presented at the transmitter terminal
