EE 407
 Microwave Engineering Lecture 3 \& 4

Transmission line characteristics

Dr. Sheikh Sharif Iqbal

References: Text books and Agilent notes

Behavior of basic Transmission media:

- At low frequencies: TL is considered to be a short wire with a negligible distributed resistance, represented as lumped for the purpose of analysis.

- At high frequencies: analyzed by M.E's or distributed circuit model;

- $\mathbf{d V} / \mathbf{d z}=-\mathbf{Z I}$ and $\mathbf{d I} / \mathbf{d z}=-\mathbf{Y V}$; where ' Z ' \& ' Y ' are function of frequency
- Here, 'Z'\& 'Y' are function of frequency only and $\Delta Z \rightarrow 0$;.

$$
\begin{align*}
& \mathrm{dV} / \mathrm{dz}=-\mathrm{Z} \mathbf{I} \tag{eq.1}\\
& \mathrm{dI} / \mathrm{dz}=-\mathrm{Y} \mathrm{~V}
\end{align*}
$$

-Differentiating again gives: $\{$ as $\mathrm{Z} \boldsymbol{\rightarrow} \mathrm{Z}(\mathrm{f})$ \}

$$
\begin{align*}
& \mathbf{d}^{2} \mathbf{V} / \mathbf{d z}^{2}=-\mathrm{Z} . \mathrm{dI} / \mathrm{dz}=\mathrm{ZYV} \tag{eq.2}\\
& \mathbf{d}^{2} \mathbf{I} / \mathrm{dz}^{2}=-\mathrm{Y} . \mathrm{dV} / \mathbf{d z}=\mathbf{Y Z I}
\end{align*}
$$

- If no reflected wave is present;

$$
\begin{array}{lll}
\mathbf{V}=\mathbf{V}(\mathbf{z}, \mathbf{t})=\mathbf{V}_{\mathbf{0}}{ }^{+} \mathbf{e}^{\mathbf{j} \omega \mathrm{t}-\gamma \mathbf{z}} & \text { and } & \mathbf{V}^{+}=\mathbf{V}(\mathbf{z})=\mathbf{V}_{\mathbf{0}}{ }^{+} \mathbf{e}^{-\gamma \mathbf{z} \mathbf{~}} \tag{eq.3}\\
\mathbf{I}=\mathbf{I}(\mathbf{z}, \mathbf{t})=\mathbf{I}_{\mathbf{0}}{ }^{+} \mathbf{e}^{\mathbf{j \omega t - \gamma \mathbf { z }}} & \text { and } & \mathbf{I}^{+}=\mathbf{I}(\mathbf{z})=\mathbf{I}_{\mathbf{0}}{ }^{+} \mathbf{e}^{-\gamma \mathbf{z}}
\end{array}
$$

- Substitute V(z,t) and $\mathbf{I}(\mathbf{z}, \mathbf{t})$ into eq. 2 and differentiating yields:

$$
\begin{aligned}
& \gamma^{2} \mathbf{V}_{\mathbf{0}}{ }^{+} \mathbf{e}^{\mathbf{j} \omega t-\gamma \mathbf{z}}=\mathbf{Z} \mathbf{Y} \mathbf{V}_{\mathbf{0}}{ }^{+} \mathbf{e}^{\mathbf{j} \omega t-\gamma \mathbf{z}} \\
& \gamma= \pm \sqrt{\mathbf{Z} \mathbf{Y}} \\
& \gamma= \pm \sqrt{ }(\mathbf{R}+\mathbf{j} \omega \mathbf{L})(\mathbf{G}+\mathbf{j} \omega \mathbf{C}) \equiv>\text { called Propagation Constant. }
\end{aligned}
$$

Again, $\gamma \equiv \alpha+\mathbf{j} \beta$, where $\alpha=$ attenuation cons $\& \beta=$ phase cons $=2 \pi / \lambda$.

-Substituting V(z,t) and $\mathbf{I}(\mathbf{z}, \mathbf{t})$ into eq. 1 gives:

$$
\begin{aligned}
& -\gamma \mathrm{V}_{0}^{+} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}-\gamma \mathrm{z}}=-\mathrm{Z} \mathrm{I}_{0}^{+} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}-\gamma \mathrm{z}} \\
& \frac{V_{0}^{+}}{I_{0}^{+}}=\frac{Z}{\gamma}= \pm \sqrt{\frac{Z}{Y}}= \pm \sqrt{\frac{R+j \omega L}{G+j \omega C}} \quad \text { Again, } \frac{V_{0}^{+}}{I_{0}^{+}}=Z_{0}= \pm \sqrt{\frac{R+j \omega L}{G+j \omega C}}
\end{aligned}
$$

-Note: '+' \& '-' is used for observer looking into the 'load' \& 'generator' Infinitely long Transmission Line (or $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}$):

- If ' $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}$ 'of $\mathrm{TL} \Rightarrow$ Matched \Rightarrow No reflection occurs $\Rightarrow \approx$ infinite line
- Time-average incident power \& loss/length alone the line (if ' Z_{0} ' is real)

$$
\mathrm{P}^{+}(\mathrm{z})=\frac{1}{2}\left[\operatorname{ReV}^{+}(z) \mathrm{V}^{+}(z)^{*}\right]=\frac{\mathrm{V}_{0}^{+2}}{2 Z_{0}} e^{-2 \alpha z} \quad \alpha=\frac{-\Delta P / \Delta Z}{2 P}=\frac{-\left(P_{2}-P_{1}\right) / d}{2 P_{1}}
$$

Mismatched Transmission Line $\left(\mathrm{Z}_{\mathrm{L}} \neq \mathrm{Z}_{0}\right)$:

- If $Z_{L}=\infty$; when incident wave arrive at the O / C end, it must satisfy ;
(1) For the traveling wave: $\mathbf{V}^{+} / \mathbf{I}^{+}=\mathbf{V}^{-} / \mathbf{I}^{-}=\mathbf{Z}_{\mathbf{0}}$ of the transmission line
(2) Ohm's law at O / C requires an infinite impedance as current is zero
- Creation of reflected waves $\left(\mathbf{V}^{-}, \mathbf{I}^{-}\right)$satisfies both requirements.
- Thus at any pt.of TL, $\mathbf{V}(\mathbf{z})=\mathbf{V}_{\mathbf{0}}{ }^{+} \mathbf{e}^{-\gamma \mathbf{z}}+\mathbf{V}_{\mathbf{0}}^{-} \mathbf{e}^{\gamma \mathbf{z}}=\mathbf{V}^{+}+\mathbf{V}^{-}$and $\mathbf{I}(\mathbf{z})=\mathbf{I}^{+}-\mathbf{I}^{-}$
\cdot Load reflection coefficient, $\Gamma_{\mathbf{L}}=\mathbf{V}^{-} / \mathbf{V}^{+}=\left(\mathbf{V}_{0}{ }^{-} \mathbf{e}^{\mathbf{\gamma l}}\right) /\left(\mathbf{V}_{\mathbf{0}}{ }^{+} \mathbf{e}^{-\gamma l}\right)=\left(\mathbf{V}_{0}{ }^{-} / \mathbf{V}_{\mathbf{0}}{ }^{+}\right) . \mathbf{e}^{2 \gamma l}$
- Thus, ref. coeff. Γ, at any point $\mathbf{d}=(\mathbf{l}-\mathbf{z})$ from the load end, is given by;

$$
\begin{align*}
& \Gamma=\left(\mathbf{V}_{\mathbf{0}} \cdot \cdot \mathbf{e}^{\gamma(l-d)}\right) /\left(\mathbf{V}_{\mathbf{0}}^{+} \cdot \mathbf{e}^{-\gamma(l-d)}\right)=\left(\mathbf{V}_{\mathbf{0}}^{-\cdot} \cdot \mathbf{e}^{+\gamma \mathrm{l} l} \cdot \mathbf{e}^{-\gamma \mathrm{d} \mathrm{l}}\right) /\left(\mathbf{V}_{\mathbf{0}}^{+} \cdot \mathbf{e}^{-\gamma \mathrm{l} \mathbf{l}} \cdot \mathbf{e}^{+\gamma \mathrm{d}}\right) \\
& =\left[\left\{\left(\mathbf{V}_{\mathbf{0}}^{-} / \mathbf{V}_{\mathbf{0}}^{+}\right) \cdot \mathbf{e}^{2 \gamma \mathrm{l}}\right\} \mathbf{e}^{-\gamma \mathrm{l}} \cdot \mathrm{e}^{-\gamma \mathrm{d})}\right] /\left(\mathbf{e}^{-\gamma \mathrm{l}} \cdot \mathrm{e}^{+\gamma \mathrm{d}}\right)=\Gamma_{\mathbf{L}} \cdot \mathrm{e}^{-2 \gamma \mathrm{~d}} \tag{eq.5}
\end{align*}
$$

\cdot Thus at $\mathrm{z}=0($ when $\boldsymbol{d}=l), \Gamma_{\mathrm{in}}=\Gamma_{\mathrm{L}} \cdot \mathbf{e}^{-2 \gamma \mathrm{l}}=\Gamma_{\mathrm{L}} \cdot \mathbf{e}^{-2(\alpha+\mathrm{j} \beta) \mathrm{l}}=\left|\Gamma_{\mathrm{L}}\right| \cdot \mathbf{e}^{-2 \alpha \mathrm{l}} \angle \varphi_{\mathrm{L}}-2 \beta 1$

- Load ref. coeff. $\Gamma_{\mathbf{L}}$ can also be determined from Z_{0} and Z_{L} values; With $\mathrm{d}=0($ when $\mathbf{z}=I), \mathbf{V}_{\mathbf{L}}=\mathbf{V}^{+}+\mathbf{V}^{-}=\mathbf{V}_{\mathbf{0}}{ }^{+} \mathbf{e}^{-\gamma \mathrm{l}}+\mathbf{V}_{\mathbf{0}} \mathbf{e}^{\gamma \mathrm{\gamma l}}=\mathbf{V}_{\mathbf{0}}{ }^{+} \mathbf{e}^{-\gamma 1}\left[\mathbf{1}+\Gamma_{\mathbf{L}}\right]$ Similarly, $\mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathbf{0}}{ }^{+} \mathbf{e}^{-\gamma 1}\left[\mathbf{1}-\Gamma_{\mathbf{L}}\right]$
- Since $\mathbf{Z}_{\mathbf{L}}=\mathbf{V}_{\mathbf{L}} / \mathbf{I}_{\mathbf{L}}=\mathbf{Z}_{\mathbf{0}}\left\{\left(\mathbf{1}+\Gamma_{\mathrm{L}}\right) /\left(\mathbf{1}-\Gamma_{\mathrm{L}}\right)\right\}$
- or $\Gamma_{\mathrm{L}}=\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right)$
- Similarly, $\Gamma_{\mathbf{G}}=\left(\mathbf{Z}_{\mathbf{G}}-\mathbf{Z}_{\mathbf{0}}\right) /\left(\mathbf{Z}_{\mathbf{G}}+\mathbf{Z}_{\mathbf{0}}\right) \quad$ 'where $\mathbf{Z}_{\mathbf{G}}$ is the source impedance' Transmission coefficient:
- Ratio of the transmitted voltage current over incident voltage or current
- Similar to " $\Gamma_{\mathbf{L}}$ ", using equation ' $\mathbf{V}(\mathbf{z})=\mathbf{V}_{\mathbf{0}}{ }^{+} \mathbf{e}^{-\gamma \mathbf{z}}+\mathbf{V}_{\mathbf{0}} \mathbf{}^{-} \mathbf{e}^{\gamma \mathbf{z}}=\mathbf{V}_{\mathbf{t r}} \mathbf{e}^{-\gamma \mathrm{z}}$ ' yields;

Transmission coefficient, $\quad T=\left(2 Z_{L}\right) /\left(Z_{L}+Z_{0}\right)$
(eq. 7)
Power Flow: For the circuit in previous figure, if $\mathbf{Z}_{\mathbf{G}}$ is real;

- Input power : $P_{i n}=\frac{\mathrm{V}_{G}^{2}}{4 Z_{G}} \frac{\left(1-\left|\Gamma_{G}\right|^{2}\right)\left(1-\left|\Gamma_{i n}\right|^{2}\right)}{\left|1-\Gamma_{G} \Gamma_{i n}\right|^{2}}$
- Power delivered to load is: $\quad P_{L}=\frac{\mathrm{V}_{G}^{2}}{4 Z_{G}} \frac{\left(1-\left|\Gamma_{G}\right|^{2}\right)\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|1-\Gamma_{G} \Gamma_{L} e^{-2 \gamma 1}\right|^{2}} e^{-2 \alpha 1}$

Standing wave ration (SWR):

- If both incident $\left(\mathbf{V}^{+}\right)$and reflected $\left(\mathbf{V}^{-}\right)$wave are present, the voltage at any point in line is the phasor sum of \mathbf{V}^{+}and \mathbf{V}^{-}
- Thus $\left|\mathbf{V}_{\text {max }}\right|=\left|\mathbf{V}^{+}\right|+\left|\mathbf{V}^{-}\right|=\left|\mathbf{V}^{+}\right|+\left|\Gamma_{\mathbf{L}}\right| \cdot\left|\mathbf{V}^{+}\right|=\left|\mathbf{V}^{+}\right|\left\{\mathbf{1}+\left|\Gamma_{\mathbf{L}}\right|\right\}$
- and $\quad \mathbf{V}_{\text {min }}=\left|\mathbf{V}^{+}\right|-\left|\mathbf{V}^{-}\right|=\left|\mathbf{V}^{+}\right|\left\{\mathbf{1}-\left|\Gamma_{\mathbf{L}}\right|\right\}$
- By definition, VSWR $=\left|\mathbf{V}_{\text {max }}\right| /\left|\mathbf{V}_{\text {min }}\right|=\left(1+\left|\Gamma_{\mathrm{L}}\right|\right) /\left(1-\left|\Gamma_{\mathrm{L}}\right|\right)$ or $\quad\left|\Gamma_{\mathrm{L}}\right|=($ VSWR-1) $/(\mathbf{V S W R}+\mathbf{1})$
\cdot In a lossless line, $1<\mathrm{VSWR}<\infty$ and is same everywhere along the line Impedance Transformation: Impedance at pt. d ' due to Z_{L} is;

$$
\begin{aligned}
& Z_{d}=Z_{0} \frac{1+\Gamma_{L} e^{-2 \gamma \mathrm{~d}}}{1-\Gamma_{L} e^{-2 \gamma \mathrm{~d}}}=Z_{0} \frac{\left(Z_{L}+Z_{0}\right) e^{\gamma \mathrm{d}}+\left(Z_{L}-Z_{0}\right) e^{-\gamma \mathrm{d}}}{\left(Z_{L}+Z_{0}\right) e^{\gamma \mathrm{d}}-\left(Z_{L}-Z_{0}\right) e^{-\gamma \mathrm{d}}} \quad \text { (Using eq's 5, } 6 \& \text { Fig) } \\
& \left.Z_{d}=Z_{0} \frac{Z_{L}+Z_{0} \tanh \gamma \mathrm{~d}}{Z_{0}+Z_{L} \tanh \gamma \mathrm{~d}} \quad \text { (where, } \cosh \gamma \mathrm{Z}=\left(\mathrm{e}^{\gamma \mathrm{z}}+\mathrm{e}^{-\gamma \mathrm{z}}\right) / 2 ; \sinh \gamma \mathrm{Z}=\left(\mathrm{e}^{\gamma \mathrm{z}}-\mathrm{e}^{-\gamma \mathrm{z}}\right) / 2\right)
\end{aligned}
$$

- In previous figure, if $\mathrm{d}=l$, input impedance is; $Z_{i n}=Z_{0} \frac{Z_{L}+Z_{0} \tanh \gamma 1}{Z_{0}+Z_{L} \tanh \gamma 1}$
- For lossless case $(\alpha=0), \tanh \gamma \boldsymbol{l} \Rightarrow \mathbf{j} \tan \beta \boldsymbol{l}$
- For lossless case $(\alpha=0), \tanh \gamma \boldsymbol{l} \Rightarrow \mathbf{j} \tan \beta I$
- Special cases:
(1.a) Open Circuited TL: $\mathbf{Z}_{\mathbf{L}}=\infty ; \mathbf{Z}_{\mathbf{i n}(\mathbf{0} / \mathrm{c})}=\mathbf{Z}_{\mathbf{0}} \mathbf{\operatorname { c o t h } \gamma} \mathbf{l}$
(1.b) Short Circuited TL: $\mathbf{Z}_{\mathbf{L}}=\mathbf{0} ; \quad \mathbf{Z}_{\mathbf{i n}(\mathrm{s} / \mathrm{c})}=\mathbf{Z}_{\mathbf{0}} \mathbf{\operatorname { t a n h }} \gamma \mathbf{l}$

From these eq's: $\boldsymbol{\operatorname { t a n h }} \gamma \mathbf{l}=\sqrt{ }\left(\mathbf{Z}_{\mathrm{in}(s / c)} / \mathbf{Z}_{\mathbf{i n}(0 / c)}\right)$ and $\mathbf{Z}_{\mathbf{0}}=\sqrt{ }\left(\mathbf{Z}_{\mathrm{in}(0 / c)} \mathbf{Z}_{\mathrm{in}(\mathrm{s} / \mathrm{c})}\right)$
(2) Loss-free line: $\alpha=0$ or $\mathbf{R}=\mathbf{G}=\mathbf{0} ; \gamma=\mathbf{j} \omega \sqrt{ }(\mathbf{L C})$ and $\mathbf{Z}_{\mathbf{0}}=\sqrt{ }(\mathbf{L} / \mathbf{C})$
(2) Low-loss line: $\mathbf{G} \approx \mathbf{0}$ and $\mathbf{R} \ll \omega \mathbf{L} ; \gamma=\{\mathbf{R} \sqrt{ }(\mathbf{C} / \mathbf{L})\} / 2+\mathbf{j} \omega \sqrt{ }(\mathbf{L C})$

$$
Z_{0}=\sqrt{ }(L / C)-\{j R \sqrt{ }(1 / L C)\} /(2 \omega)
$$

- Example Problems (also solve the assignments given in the class):
(1) At 1 GHz , an air filled coaxial line has; $\mathrm{R}=4 \Omega / \mathrm{m}, \mathrm{L}=450 \mathrm{nH} / \mathrm{m}$, $\mathrm{G}=7 \times 10^{-4} \mathrm{mho} / \mathrm{m}, \mathrm{C}=50 \mathrm{pF} / \mathrm{m}$. Find the related $\mathbf{Z}_{0}, \alpha, \beta, \boldsymbol{v}_{\boldsymbol{p}}$ and λ.
(2) For a loss-less $T L, \mathrm{~L}=0.60 \mu \mathrm{H} / \mathrm{m}, \mathrm{C}=240 \mathrm{pF} / \mathrm{m}$ and $\omega=2 \pi \times 10^{8} \mathrm{rad} / \mathrm{m}$.
(a) Find the related β and λ in the line. (assume air filled line)
(b) If the line length $\mathbf{I}=\lambda / \mathbf{4}$ and the line is terminated by $\mathbf{Z}_{\mathbf{L}}=-\mathbf{j} 100 \Omega$, find the input impedance $\left(\mathbf{Z}_{\mathbf{i n}}\right)$ of the line. (Hint: $\beta=2 \pi / \lambda$)

Review

High-Frequency Device Characterization

Review

Reflection Parameters

