
 1

Chapter 6.1: Flags-control instructions: Monitors/controls state of instruction execution.

• LAHF Load AH from flags (AH) ← (Flags)
• SAHF Store AH into flags (Flags) ← (AH)

 Flags affected: SF, ZF, AF, PF, CF
• CLC Clear Carry Flag (CF) ← 0
• STC Set Carry Flag (CF) ← 1
• CLI Clear Interrupt Flag (IF) ← 0
• STI Set interrupt flag (IF) ← 1

Figure 1 above shows the format of flag digits in AH register.

So when all flags are set (‘1’) AH=D7H which is equivalent to having AH=FFH.

But when all flags are reset (‘1’) AH=02H which is equivalent to having AH=00H.

Example 1: Write a program to complement the status of flags bits: SF, ZF, AF, PF, CF.
Solution 1: LAHF ; this will load the flag bits into AH register (Note: no operand needed)
 NOT AH ; this will invert the status of flag bits
 SAHF ; this will store back the complemented status of flag bits into Flag reg.

Example 2: Write a program to compliment only the carry flag. CMC

6.1: Compare (CMP) Instruction: compares data and sets FLAGS-bits accordingly

Mnemonic Meaning Format Operation Flags Affected
CMP Compare CMP D,S (D) – (S) is used in setting or

resetting the flags
CF, AF, OF, PF, SF, ZF

Write a program to compare AL and BL register contents and if they are not equal
decrements the contents of AL and compares them again.

Destination Source
Register Register
Register Memory
Memory Register
Register Immediate
Memory Immediate

Accumulator Immediate

Figure 1

10 0

CMP Ins subtracts (S)
from (D) operand, but
is only interested in
how the result is
affecting the flag-bits.

As 2’s-complement
affects the CF, so use
it with caution in
‘CMP’ instruction

For CMP AL,BL => Al or BL value do not change after instruction is executed
 Al = 99H = 10011001B
 (-) Bl =1BH = 00011011B
 01111110B
For CMP BL,AL
 Bl = 1BH = 00011011B
 (-) Al = 99H = 10011001B
 10000010B

where final-result is not important but how Flags are
affected is important such as, ZF=NZ as AL≠BL
and CF=NC as AL>BL and also AF=AC and PF=PE

where final-result is not important but how Flags are
affected is important such as, ZF=NZ as AL≠BL
and CF=CY as AL>BL and also AF=NA and PF=PE

EE 390 : Digital System Engineering
Handout 10 by Dr Sheikh Sharif Iqbal

 2

Chapter 6.3: Control flow and jump instructions:

- Since CS:IP points to the instruction to be executed next, JUMP instruction changes
the contents of these registers to point to another instruction (location we need to jump)

- For Unconditional Jump, if only the IP is changed Intrasegment jump (or jump
within same segment) BUT if CS:IP is changed Intersegment jump

- 2 Jump operations allowed by 8088; (a) Unconditional and (b) Conditional Jumps:

Example:

 CMP AX,CX

 JNZ BX

or/and JNE BX

or/and JA BX

Physical address
to jump is the
content of BX

That means the content of BX is copied to IP and
the program points to the new P.A.= CS:IP location

Physical
address Memory

contents

Example: JMP BX
and JMP [BX]

 can jump -126D to +129D bytes from location
 can jump -32766D to +32769D bytes from location
 For Inter-segment Jump operation

For intersegment
jump operation

Conditional Jump:

 3

Examples of conditional jump commands:

Flow-chart

DOS functions (20H to 3FH): Commonly used DOS interrupts INT 21H
 - with AL=01H data requested to be inputted from the keyboard with echo is stored in AL register
 - with AL=07H data requested to be inputted from the keyboard without echo is stored in AL register
 - with AL=02H ASCII code of the data stored in DL register is displayed in the monitor
 - with AL=09H Displays string of characters (stored using ‘DB’ &terminated by ‘$’) in the monitor
 - WITH AX=4C00H Used to terminate program and return control to DOS or parent process

Flags are based on unsigned numbers comparison:

Flags are based on signed numbers comparison:

EE 390 : Digital System Engineering
Handout 12 by Dr Sheikh Sharif Iqbal

 4

Example:

Text book figures

2.12: PUSH/POP Ins. works with stack-segment:

‘PUSH S’

‘POP D’

HW: Solve and pass the problem in the WebCT regarding “Push-Pop and Jump”

Chapter 6.4: Subroutine-handling instructions:

 12 34

 BB AA

Subroutines are special segment of program that can be called for execution from any point of the main-
program. Once called and executed, the main program continues to execute from the point where the
subroutine is called from. An Assembly Language subroutine is also called a Procedure.

Once executed, CALL Instruction; 1st PUSH next IP of main-program; 2nd Loads IP with operand address

Once executed, RET Instruction; Uses POP instruction to loads the (pushed-return address)from stack into IP

(1) Stack pointer is decremented or (SS:SP – 2) (SS:SP)new

(2) Source register contents are loaded in stack segment or (S) [SS:SP]

(1) Stack seg. content is loaded into Destination register or [SS:SP] (D)

(2) Stack pointer is incremented or (SS:SP + 2) (SS:SP)new

Low to
high P.
Address

 12 34

 5

Chapter 6.5: LOOP handling instruction: By default works with CX register

7.2 DB and DW directive statements Instructions to the Assembler & Not assembled

 - ‘DB’ (or Define Byte) Instruction: Initialize byte size variables or locations.

 - ‘DW’ (or Define Word) Instruction: Initialize word size variables or locations.

Examples for TASM program: (1) VAR1 DB 25H, 26H, 27H, 28H

 (2) VAR2 DW 2526H, 2728H

 (3) VAR3 DB “ShaR”

 (4) VAR4 DB 10 DUP (0)
 Initialize 10 location to 0 H

 - ‘EQU’ Instruction
 Assign permanent value

 - ‘=’ Instruction
 Assigned value can be redefined

Chapter 7: Assembly Language Program Development

- To enter, assemble and execute the programs Using Turbo Assembler Program (TASM)
 (a) EDIT Prog1.asm {to write the program}
 (b) TASM Prog1 {to assemble the program}
 (c) TLINK Prog1 {to link the program}
 (d) TD Prog1 {to execute the program}

- Remember another Assembler often used is called MASM (Microsoft assembler)

….. SEE HAND-OUT for evolution of character-conversion-program….

CS:0000 25H CS:0005 26H CS:000A S

CS:0001 26H CS:0006 25H CS:000B h

CS:0002 27H CS:0007 28H CS:000C a

CS:0003 28H CS:0008 27H CS:000D R

Example: DEC CX
 JNZ *** LOOP ***

 Example 1 Example 2 Example 3

Memory VAR1 VAR2 VAR3

EE 390 : Digital System Engineering
Handout 13 by Dr Sheikh Sharif Iqbal

 6

 TITLE "Use Subroutines to Store, Convert (small to capital) & restore Inputted letters"

 .MODEL SMALL ; Program fits with in 64 KB of memory

 .STACK 032H ; Program reserves 50 Bytes as stack segment
 .DATA

 VAR1 DB 20 DUP(0)

 .CODE
 ORG 00H

 MOV AX, @DATA
 MOV DS, AX
 LEA DI,VAR1
 CALL INPUT
 LEA SI,VAR1
 CALL CONVERT
 LEA SI,VAR1
 CALL OUTPUT
 CALL EXIT_TO_DOS

 INPUT PROC NEAR
 labelIN: MOV AH,1
 INT 021H
 MOV [DI],AL
 INC DI
 CMP AL,0DH
 JNZ labelIN
 RET
 INPUT ENDP

 CONVERT PROC NEAR
 labelC2: CMP byte ptr [SI],061H
 JB labelC1
 CMP byte ptr [SI],07AH
 JA labelC1
 SUB byte ptr [SI],020H
 labelC1: INC SI
 CMP byte ptr [SI],0DH
 JNZ labelC2
 RET
 CONVERT ENDP

 OUTPUT PROC NEAR
 labelOUT: MOV DL,byte ptr [SI]
 MOV AH,2
 INT 021H
 INC SI
 CMP DL,0DH
 JNZ labelOUT
 RET
 OUTPUT ENDP

 EXIT_TO_DOS PROC NEAR
 MOV AX,4C00H
 INT 021H
 EXIT_TO_DOS ENDP

 END

‘DB’ is define byte, which allocates 20
memory locations to VAR1 for data storage

The main assembly language program area.
Four subroutines are called from here;
(1) INPUT subroutine
(2) CONVERT subroutine
(3) OUTPUT subroutine
(4) EXIT_TO_DOS subroutine.
The advantage of using subroutines becomes
clear when the statements with in the
subroutines are to be called more than onces.

In this INPUT subroutine or procedure;
(1) Inputted characters from the keyboard are stored

in the reserved memory locations of VAR1.
(2) The program requires the user to press ‘ENTER

key’ after the last inputted character. That’s why,
‘ODH’ (equivalent to ASCII character for
‘ENTER key’) is used to recognize the end of
inputted characters.

In this CONVERT subroutine or procedure;
(1) Stored inputted characters are compared with the

lower limit of ‘61H’ (ASCII ‘a’) and the upper
limit of ‘7AH’ (ASCII ‘z’) of the small letters

(2) If any stored character satisfies above limit of
small letters, then 20H is subtracted from its
equivalent hex value to convert it to capital letter.

(3) This process is repeated until ‘OD’ is found.

In this OUTPUT subroutine or procedure;
(1) The resulted capital letters, which are converted

and stored in the same memory locations of
VAR1, are then displayed in the monitor

(2) The DOS subroutine of ‘INT 21H’ with AH=2H
is used for displaying individual characters. (For
inputting characters, INT 21’ with AH=1 is used.

In this EXIT_TO_DOS subroutine or procedure;
(1) MSDOS subroutine of ‘INT 21H’ with

AX=4C00H is also used for normal termination
to DOS prompt after the program is executed.

(3) This is essential, if the assembled program is to
be executed directly from MSDOS prompt; c:\>

‘The main program area for codes starts

≈ LEA SI,[VAR1]

 7

5.1: XLAT instruction: is used for Translation using predefined look-up tables.

6.6: String-handling instruction: STRING means series/block of data words (or bytes)
that reside/sorted in consecutive memory locations.

- See examples in figures 6-33, 6-34 and 6-35 in the book. For CLD Ins. Figure 6-38

; AL=54H=’T’

- By default uses ‘AL’ and
 ‘BX’ registers of the CPU.
- If we want to access numbers stored

using ‘DB’ in ‘VAR’ location,
‘BX’ is used to point to the ‘VAR’
and ‘AL’ points ‘DATA’
(remember the count of AL always
starts from zero)

TITLE "XLAT"
.MODEL SMALL
.STACK 32
.DATA

 VAR DB "1MISEIOHN
 TO_IPAOTTAS"
 VAR1 DB 2H,3H,4H,5H,6H,7H,
 8H,9H,AH,BH,CH,DH,11H,23H
 VAR 3 EQU 10H

.CODE
MOV AX,@DATA
MOV DS,AX
XOR AH,AH
MOV AL,VAR3
LEA BX,VAR
XLAT AL= ----
MOV AX,4C00H
INT 21H

END

‘REP prefixs’ works with ‘MOVS’ and ‘STOS’ repeats while not end or string, CX ≠ 0

 [ES:DI]

EE 390 : Digital System Engineering
Handout 14 by Dr Sheikh Sharif Iqbal

 8

Modified example of Data block program using "REP" and "MOVSB" instruction:

CLD Ins. “clear DF” or DF=’0’ means auto-increment mode or ‘SI’ and/or ‘DI’
are auto-incremented by ‘1’ for byte-data and ‘2’ for word-data.

Exercise: Write a program, using “REPSTOSB” instruction, to store a data of
‘95H’ into memory locations starting from DS:A000H A008H

LOOP NXTPT

MOV AH,[DS:SI]
 MOV [DS:DI[,AH
 INC SI
INC DI

