EE 390 : Digital System Engineering 1
Handout 10 by Dr Sheikh Sharif Igbal

Chapter 6.1: Flags-control instructions: Monitors/controls state of instruction execution.

* LAHF Load AH from flags (AH) < (Flags) !
+ SAHF Store AH into flags (Flags) < (AH) SF|2Fi 0 [AF[0 |PF| 1
Flags affected: SF, ZF, AF, PF, CF
* CLC Clear Carry Flag (CF) <0 gl’i = gfrr;fftlag
= la
+ STC Set Carry Flag (CF) < 1 AF = Auxiliary
« CLI Clear Interrupt Flag (IF) <0 gl:: fgarity:llag
e STI Set interrupt flag (IF) < 1 = Undufined {do ot use)

Figure 1 above shows the format of flag digits in AH register. Figure 1

So when all flags are set (‘1’) =» AH=D7y which is equivalent to having AH=FFy.
But when all flags are reset (‘1°) =» AH=02y which is equivalent to having AH=00y.

Example 1: Write a program to complement the status of flags bits: SF, ZF, AF, PF, CF.
Solution 1: | LAHF ; this will load the flag bits into AH register (Note: no operand needed)
NOT AH ; this will invert the status of flag bits
SAHF ; this will store back the complemented status of flag bits into Flag reg.

Example 2: Write a program to compliment only the carry flag. = CMC

6.1: Compare (CMP) Instruction: compares data and sets FLAGS-bits accordingly

MnemonicMeaning |Format |Operation Flags Affected

CMP Compare |CMP D,S |(D)—(S) is used in setting or |CF, AF, OF, PF, SF, ZF
resetting the flags

Destination Source
CMP Ins subtracts (S) Register Register As 2’s-complement
from (D) operand, but Register Memory affects the CF, so use
is only interested in Memory Register it with caution in
how the result is Register Immediate ‘CMP’ instruction
affecting the flag-bits. Memory Immediate

Accumulator Immediate

For & CMP AL,BL => Al or BL value do not change after instruction is executed
Al=99,=10011001g { where final-result is not important but how Flags are

(-) BI=1Bg=00011011p affected is important =» such as, ZF=NZ as AL#BL
011111108 and CF=NC as AL>BL and also AF=AC and PF=PE

For = CMP BL,AL
Bl=1By = 00011011, { where final-result is not important but how Flags are

() AI=99,= 10011001, affected is important =» such as, ZF=NZ as AL#BL
100000105 and CF=CY as AL>BL and also AF=NA and PF=PE

Write a program to compare AL and BL register contents and if they are not equal
decrements the contents of AL and compares them again.

Chapter 6.3: Control flow and jump instructions:

- Since CS:IP points to the instruction to be executed next, JUMP instruction changes
the contents of these registers to point to another instruction (location we need to jump)

- For Unconditional Jump, if only the IP is changed = Intrasegment jump (or jump
within same segment) BUT if CS:IP is changed =» Intersegment jump

- 2 Jump operations allowed by 8088: (a) Unconditional and (b) Conditional Jumps:

Part I it

IMP AA |=— Uneonditional jump

Part[

instruction S JCC A4 -—

Part H Locations skipped due
1o jump

Condition

conditional jump instruction

Mext instruction executed if

condition not met
Locations skipped if jump

_— met?
MNext imstruction < taken
AN XOXKXX |—o ——t Part II
Part III YES > Ah «— Nextinstruction executed if
! | / \\ condition met
Physical A/ -t \4
address Memor
\ contents
IMP | Unconditional | JMP Operand | Tump is initiated to the None Example: JMP BX
i address specified by the and JMP [BX]
Jump operand

(a)

For intersegment _{ Short-label = can jump -126p, to +129p bytes from location
Jjump operation

Near label |3 can jump -32766p to +32769p bytes from location
Far-label = For Inter-segment Jump operation

Memptrl6o
. Regptrlo
Conditional Jump: Memptr32
JZ Jump if ZERO ZF=1 Exam) le:
IE Jump if EQUAL ZF=1
INZ Jump if NOT ZERO ZF=0 CMP AX,CX
INE Jump if NOT EQUAL ZF=0
c Jump if CARRY CF=—1 JNZ BX
INC Jump if NO CARRY CF=0 orfand JNE BX
Xz, Jump if CX=0 Cx=1
JECXZ Jump if ECX=0 ECX—0 or/and JA BX
P Jump if PARITY EVEN PF=1 \
INP Jump if PARITY ODD PF=0 \4

That means the content of BX is copied to IP and
the program points to the new P.A.= CS:IP location

Physical address

to jump is the
content of BX

EE 390 : Digital System Engineering 3
Handout 12 by Dr Sheikh Sharif Igbal

Flags are based on unsigned numbers comparison: . .
Examples of conditional jump commands:
1A Jump if above op 1=o0p2 CF=0 and ZF=0 CMP AX, BX
INBE Jump if not below or equal CF=0 and ZF=0 JE EQUAL)
opl not <= op2 R ; Next instruction if (AX) = (BX)
JAE Jump if above or equal CF=0
opl==op2 .
INB Tump if not below CF=0 EQUAL: L - ; Next instruction if (AX) = (BX)
opl not <op2
1B Jump if below opl<op2 CF=1
INAE Jump if not above nor equal CF=1 - -
opl<op2
IBE Jump if below or equal CX=1 or ZF=1
Opl==ap2 AND AL, 04H
- = JNZ BIT2_ONE
INA Jump if not above CF=1 or ZF=1 . i - Next instruction if B2 of AL = 0
Opl==op2
Flags are based on signed numbers comparison: - e v
- BIiT2_ONE: - ; Next instruction if B2 of AL = 1
16 Tump if GREATER opl>opl SF=OF and ZF=0
INLE Tump if NOT LESS THAN or equal opl=op2 SF=0F and ZF=0
IGE Jump if GREATER THAN or equal opl>=op2 SF=0F
- MOV CL,03H
INL | Jumpif not LESS THAN SF=OF : SHR AL CL
opl==opl JC BIT2_ONE
L Jump if LESS THAN opl<op? SF<-0F ; Next instruction if B2 of AL=0
INGE Tump if not GREATER THAN nor equal opl<op2 SF<=0F)
ILE Tump if LESS THAN or equal ZF=1 o §F<=0F - o . L
Opl<=op? BIT2_ONE: ; Next instruction if B2 of AL = 1
NG Tump if not GREATER THAN opl<=0p2 ZF=1 ot SF<>0F
Opl<=op2
MOV AX, DATASEGADDR \ 5 g
MOV DS, AX g g .
MOV 51, BLEIADDR 5 i g E
MOV DI, BLKZADDR . s v A —_——
MOV AN .
NXTPT: MOV AM e B| [Eze | E 5 g| |53
- ,(31) 25 £ |58y | & |B=.z| [Es%| (5%
MOV DIl AH sES-5| |2285 | = |s8z3| |FEs| [3E2
e P ST na EE T A b iublt
£235 &5 3% ¥5~ - A E
d2f ¥ =52 23 & Sez REE
IKC i} & & = E z 5 ;5
DEC cx
IKE NXTPT)
‘—| Flow-chart

DOS functions (20, to 3F): Commonly used DOS interrupts =» INT 21
- with AL=01y = data requested to be inputted from the keyboard with echo is stored in AL register

- with AL=07y =¥ data requested to be inputted from the keyboard without echo is stored in AL register
- with AL=02y =» ASCII code of the data stored in DL register is displayed in the monitor

- with AL=09y =» Displays string of characters (stored using ‘DB’ &terminated by ‘$’) in the monitor
- WITH AX=4C004 = Used to terminate program and return control to DOS or parent process

POP AX
2.12: PUSH/POP Ins. = works with stack-segment: POP BX
. Text book figures PUSH AX
Existing AX --1 8X 7 [
Low to stack ‘ ! Example:
hlgh P. \5 N "~ "~
Address o o T 1062 00 | 11 1062{ o0 | 11 ;Subroutine: SQUARE
1060 | 22 § 33 060 | 22 | 38 | | 1060 | 22 | 33 Description: (BX)= square of (BL)
108€f a4 | 58 g'l;; 1056 | 44 | 58 I 1056 [44 | s5
wscfes[77] 5% 105C| 66 | 77 tos lCl%e 7™ SQUARE PROC NEAR
1safes|ow]| ©-° 10sA | 88 | 99 —105A| 88 | 99 < PUSH AX
Ig-s—. 1058 AA| BB 1058 | AA | BB t0s8 | AA | BB |-~ MOV ALBL
1058 01] 23 Zx (. 56|12 | 34 fe- 186 12 34 p---4 !
g S 1084 a5 | 67 IMUL BL
1054] a5 | &7 § b 1054 | 45 | 67 MOV BXAX
1052] 89 | AB ag 1052 | 89 | A 1052 | 89 | AB
1os0fco | eF 5 1060 | co | EF 1080 [co | EF POP AX
. Z o ‘ RET
[o1] 05] ss [01] o5 |ss [01 [05 |ss (SQUARE EXDP
s

P s
(1) Stack pointer is decremented or (SS:SP —2) = (SS:SP)pew
‘PUSH S’

(2) Source register contents are loaded in stack segment or (S) = [SS:SP]

(1) Stack seg. content is loaded into Destination register or [SS:SP] =» (D)
‘POP D’) o
(2) Stack pointer is incremented or (SS:SP + 2) =» (SS:SP)ew

HW: Solve and pass the problem in the WebCT regarding “Push-Pop and Jump”

Chapter 6.4: Subroutine-handling instructions:

Main Program

Mnemonic | Meaning | Format (Jperation Flags
CALL subroutt | CALL | Execution continuous from the address of the | Mone Call subro;tine 2 Subroutine
necall | operand | subroutine specified by operand. Information Nodt morromtion .\

First instruction

requited to return back to the main program
suchas [P and C3 are saved on the stack.

Call subroutine &

Mnemonic Meaning | Format Operation Flags IR
EET Eeturn EET Eeturn to the main program by Mone _
restoring IP (and C3 for far-proc). _ Return

Subroutines are special segment of program that can be called for execution from any point of the main-
program. Once called and executed, the main program continues to execute from the point where the
subroutine is called from. An Assembly Language subroutine is also called a Procedure.

Once executed, CALL Instruction; 1¥ PUSH next IP of main-program; 2" Loads IP with operand address

Once executed, RET Instruction; Uses POP instruction to loads the (pushed-return address)gom stack into IP

EE 390 : Digital System Engineering 5
Handout 13 by Dr Sheikh Sharif Igbal

Chapter 6.5: LOOP handling instruction: By default works with CX register

Mnemonic Meaning Format Operation

LOOP Loop LOOP Short-label (CX) (CXD)-1

Jump is initiated to location
definition by short-label if
(CX)+#£0; otherwise, execute next
sequential instruction

LOOPE/LOOPZ Loop while LOOPE/LOOPZ (CX) (CX)-1
equal/loop short-label Jump to location definition by
while zero short-label if (CX):£0 and ZF=1;

otherwise, execute next
sequential instruction

LOOPNE/LOOPNZ | Loop while LOOPNE/LOOPNZ. | (CX) (CX)-1

not equal/loop | short-label Jump to location defined by
while not zero short-label if (CX):£0 and ZF=0;
otherwise, execute next
Example- DEC CX sequential instruction
: skeskesk
INg A } LOOP

7.2 DB and DW directive statements =» Instructions to the Assembler & Not assembled

- ‘DB’ (or Define Byte) Instruction: Initialize byte size variables or locations.
- ‘DW’ (or Define Word) Instruction: Initialize word size variables or locations.

Examples for TASM program: (1) VARI1 DB 25y, 26y, 274, 28u

VAR1 VAR2 VAR3
(2) VAR2 DW 2526y, 2728y -~ 7 \ Memory
() VARSDB™ShaR™ | o fifi| 25, | sl 26| Csdiig| s

(4) VAR4 DB 10 DUP (0)
Initialize 10 location to 0 <

- ‘EQU’ Instruction CS:0002 | 27y CS:0007 | 28y CS:000C | a
Assign permanent value

CS:0001 | 26y CS:0006 | 254 CS:000B | h

s . CS:0003 | 28y CS:0008 | 274 CS:000D | R
- ‘=" Instruction \
Assigned value can be redefined Example 1 Example 2 Example 3

Chapter 7: Assembly Language Program Development

- To enter, assemble and execute the programs Using Turbo Assembler Program (TASM)
(@) EDIT Progl.asm {to write the program}

(b) TASM Progl {to assemble the program}
(c) TLINK Progl {to link the program}
(d TD Progl {to execute the program}

- Remember another Assembler often used is called MASM (Microsoft assembler)

..... SEE HAND-OQUT for evolution of character-conversion-program....

TITLE "Use Subroutines to Store, Convert (small to capital) & restore Inputted letters"

.MODEL SMALL

; Program fits with in 64 KB of memory

; Program reserves 50 Bytes as stack segment

STACK 032H
.DATA
VAR1 DB 20 DUP(0)
.CODE
ORG 00H
MOV AX, @DATA
MOV DS, AX
LEA DIVARI
CALL INPUT
LEA SLVARI
CALL CONVERT
LEA SLVARI ~LEASI[VARI]
CALL OUTPUT
CALL EXIT_TO _DOS
INPUT PROC NEAR
labelIN: MOV AH,1
INT 021H
MOV [DI],AL
INC DI
CMP AL,0DH
INZ labelIN
RET
INPUT ENDP
CONVERT PROC NEAR
labelC2: CMP byte ptr [SI],061H
JB labelCl1
CMP byte ptr [SI],07AH
JA labelCl1

SUB byte ptr [SI],020H

labelC1:INC SI

CMP byte ptr [SI],0DH
INZ labelC2
RET

CONVERT ENDP

OUTPUT PROC

labelOUT: MOV
MOV
INT
INC
CMP
INZ
RET

OUTPUT ENDP

EXIT TO DOS PROC

MOV
INT

EXIT TO DOS ENDP

NEAR

DL,byte ptr [SI]
AH,2

021H

ST

DL,0DH
labelOUT

NEAR
AX,4CO0H
021H

‘DB’ is define byte, which allocates 20
memory locations to VAR1 for data storage

} “The main program area for codes starts

The main assembly language program area.
Four subroutines are called from here;

(1) INPUT subroutine

(2) CONVERT subroutine

(3) OUTPUT subroutine

(4) EXIT_TO_DOS subroutine.

The advantage of using subroutines becomes
clear when the statements with in the
subroutines are to be called more than onces.

In this INPUT subroutine or procedure;

(1) Inputted characters from the keyboard are stored
in the reserved memory locations of VARI.

(2) The program requires the user to press ‘ENTER
key’ after the last inputted character. That’s why,
‘ODy’ (equivalent to ASCII character for
‘ENTER key’) is used to recognize the end of
inputted characters.

In this CONVERT subroutine or procedure;

(1) Stored inputted characters are compared with the
lower limit of ‘61" (ASCII ‘a’) and the upper
limit of “7Ay’ (ASCII ‘z”) of the small letters

(2) If any stored character satisfies above limit of
small letters, then 20y 1is subtracted from its
equivalent hex value to convert it to capital letter.

(3) This process is repeated until ‘OD’ is found.

In this OUTPUT subroutine or procedure;

(1) The resulted capital letters, which are converted
and stored in the same memory locations of
VARI, are then displayed in the monitor

(2) The DOS subroutine of ‘INT 21y with AH=2y
is used for displaying individual characters. (For
inputting characters, INT 21’ with AH=1 is used.

In this EXIT TO_DOS subroutine or procedure;

(1) MSDOS subroutine of ‘INT 21y’ with
AX=4CO00y is also used for normal termination
to DOS prompt after the program is executed.

(3) This is essential, if the assembled program is to
be executed directly from MSDOS prompt; ¢:\>

EE 390 : Digital System Engineering
Handout 14 by Dr Sheikh Sharif Igbal

5.1: XLAT instruction: is used for Translation using predefined look-up tables.

- By default uses ‘AL’ and
‘BX” registers of the CPU.

- If we want to access numbers stored
using ‘DB’ in “VAR’ location,
‘BX” is used to point to the ‘VAR’
and ‘AL’ points ‘DATA’
(remember the count of AL always
starts from zero)

TITLE "XLAT"
MODEL SMALL
STACK 32
DATA
VAR DB "IMISEIOHN
TO IPAOTTAS"
VARI DB 24,3u,4m,55,61, 71,
811,91, At Bis, Cr, Dis, 1 111,230
VAR 3 EQU 10y
.CODE
MOV
MOV

AX,@DATA

DS,AX
XOR AH,AH
MOV AL,VAR3
LEA BX,VAR
XLAT = AL= -
MOV AX,4C00y
INT 21y

END

Address
03100
ps
. 03130
BX 03131
Before AX | XX3F o
execution
After AX |xxeF
execution f

0314A

Memory Character
(EBCDIC)

00

NUL

FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
“7A
5E
4C
7E
6E
6F
7C
c1
C2
c3
C4
C5
c6
c7
cs
co
D1

CONOOALWN=O

C—TITOTMMOODP>»O SOV Il A----

6.6: String-handling instruction: STRING means series/block of data words (or bytes)
that reside/sorted in consecutive memory locations.

MMnemo.. Meaning Format Operation Flags Affected
MOWE IMowve string MOVERS (EEn0+1DD (DE0+ (ST HMone
IOV ST (5D (Sl er 2
@D ®Dler2 _[ES:D[]
CMPS Compare string CHMFPER/ Set flags as per CF.PF,AF ZF ,5F,OF
CIESW ((DEN0+HED - (ESH0+HDD
(S (SIEl or 2
(DL DD+l or 2
SCAS Scan string SCASE/ Set flags as per CF.PF AF ZF,5F,OF
SCASW (AL or AXD) - (ESHO+HDI)
DIy (DD*1 or 2
LoDs load string LODSB/S (AL or AZD (DISW0+H(ED MNaone
LODEW (ED (Sl or 2
STOS Store string STOSES (E20+(DIy (AL or AZDE] IMone
STOSE or 2
DD (DDl or 2

- See examples in figures 6-33, 6-34 and 6-35 in the book. For CLD Ins. =» Figure 6-38

‘REP prefixs’ = works with ‘MOVS’ and ‘STOS’ = repeats while not end or string, CX # 0

)

REP MOWVS
5TOS

REPE/REPZ CMPS
SCAS

REPNE/REPNZ CMPS
SCAS

Repeat while not end of string C3#0

Repcat while not end of string and strings are

equal

C3X+0 and and ZF=1

Repeat while not end of string and strings are

not equal C30 and ZF=0

Modified example of Data block program using "REP" and "MOVSB" instruction:

MOV
MOV
MOV
MOV
MOV
MOV
MOV
INC

INC

MNXTPT:

HLT

AX, DATASEGADDR | MOV AX,DATASEGADD |
i MOV DS,AX
DI, BLK ::,nrm MOV __ ESAX
% N MOV SLBLK1ADDR
AH, [51] > MOV DI,BLK2ADDR
(o1, AH MOV CX,N |mov anps:si)
5l CcLD i\I/I\I(gVSI[DS:DI[,AH
L] oop nxtpT | NXTPT: /[MOVSBT INC DI

LOOP NXTPT |
RATFT HLT

MOV AX,DATASEGADD
MOV DSAX
MOV ES,AX
MOV SLBLK1ADDR
MOV DILBLK2ADDR

> MOV CXN
CLD

NXTPT:[REP MOVSB]
HLT

/

CLD Ins. = “clear DF” or DF="0" =» means auto-increment mode or ‘SI’ and/or ‘DI’
are auto-incremented by ‘1’ for byte-data and ‘2’ for word-data.

Example 2: write a program to copy a block of 32 consecutive bytes from the block

Of memory locations starting at address MASTER in the current data segment

(DS) to a block of locations starting at address COPY in the current extra

Segment (ES)

Solution:

Exercise:

CLD
MOV AX, DATA_SEG
MOV DS, AX

MOV AX, EXTRA_SEG

MOV ES, AX
MOV CX, 20H

MOV SI, OFFSET MASTER
MOV DI, OFFSET COPY

REPZMOVSE

Write a program, using “REPSTOSB” instruction, to store a data of
‘954" into memory locations starting from DS:A0004 A008H

