
 Extra Handout No 3
By Dr Sheikh Sharif Iqbal

Software model of 8086 and 8086 systems

Objective:

- To present the software model of 80x86 microprocessor

- To introduce the Main-memory and input-output address spaces
supported by 8086/8088 system

- To discuss the internal registers of 8086/8088 microprocessor

Slide 1: Software Model of 80x86 Sysmtes

- Intel’s recent microprocessors are fundamentally based on 80x86.
So, the software model of 8086/8088 system is shown here to
demonstrate its behavior from a software/programming point of view.

 Input/Output

0000 H 1 Byte
0001 H 5 A H
0002 H
0003 H

 .

 .

64-KByte of
bytewide

input- output
address
spaces

FFFE H F F H
FFFF H A 6 H

 Main Memory

00000 H 1 Byte
00001 H 5 A H
00002 H
00003 H
00004 H
 .

 .

FFFFC H
FFFFC H
FFFFD H

1-MByte of
byte–wide

Main
memory
storage

locations

FFFFE H 8 C H
FFFFF H A 6 H

Ref: 'Online course
on EE-390', KFUPM

- It is clear from the figure that in this model, we have access to 14 16-bit CPU
registers, 1 Mega or million of byte-wide main memory storages and 64 thousand
byte wide input output address spaces for peripheral devices.

- Thus, this model focuses more on the control-signals and registers of the
microprocessor that can be accessed by the programmer from software
prospective. This allows the programmer to know; how external memory and
input/output peripherals are organized, how information is arranged in registers,
and how CPU registers interacts with memory and input/output devices.

Slide 2: Main-memory of 80x86 systems (Software model)

- Computer system has several
forms of memory storage, each
with individual purposes.
- Detail discussion on all types of
storage media are presented in later
modules. This section will only discuss
the organization of Main memory.

- Main memory (RAM) stores
instructions/data related to the
program, which is being executed.

- 8086 and 8088 systems can support 1-MByte of main-memory
spaces (for temporary storage) and 64 KByte of input-output spaces.

- Since, 1 Mega = 1048575D = FFFFFH, converting the hex number
into binary reaffirms the need for a 20-bit address bus (in binary).

- Thus, the physical address, pointing to the byte-wide storage
locations in the main memory, ranges from 00000H to FFFFFH.

Slide 3: Software Organization of the 80x86 Main-memory

- The Main memory of 1 Mega byte-
wide storage locations of an 80x86
computer system are shown here.

- Note, PA=00001H stores a data
Byte of “5AH” and Word of “625AH”,
where 5AH L.S.Byte & 62H M.S.Byte
and the Double-word of “A7FF625AH”
- Note for a stored word data at physical

address of 00001, the lower addressed

byte is the Lease Significant byte of the

word and the higher addressed byte is the

most significant byte of the word. Similar

rule also applies for the stored double-word

- To permit efficient use of memory,
word data’s are stored in ‘even’ and
‘odd’ physical address (PA) boundaries.

- Words stored at even PA’s (0H, 2HFFFFEH) are called aligned
words and odd PA’s (1H, 3H …. FFFFFH), are called misaligned words.
Note that the aligned word of “5A49H” is stored in PA=00000H or 0H

- Note that two aligned words are shown in figure with even physical address of
00000H and FFFFEH. Also two misaligned words shown in the figure are stored at
odd physical address of 00003H and FFFFCH.

Physical
Address(PA)

Memory
Contents

00000 H 4 9 H

00001 H 5 A H
00002 H 6 2 H
00003 H F F H
00004 H A 7 H
 .

 .

FFFFC H 2 5 H
FFFFC H 0 0 H
FFFFD H 8 C H
FFFFE H 1111 0011B

FFFFF H A 6 H

Aligned
Word

Misaligned
Word

Misaligned
Word

Aligned
Word

Slide 4: Mapping of 80x86 systems Main-memory

- The 1 MByte main-memory of an
80x86 systems is divided into three
parts: (a) General-use, (b) Dedicated
and (c) Reserved storage locations

- The general-use part ranges from
P.A. of 80H to FFFEFH and is open to
the user for storing programs.

- Dedicated memories ranges from
P.A. of “0H to 13H”and “FFFF0H to
FFFFBH” and are used to process
system interrupts, reset-functions
and exceptions.

- Reserved memories ranges from P.A. of “14H to 7FH”and “FFFFBH
to FFFFFH” and are used to process user defined interrupts for future
hardware and software products.

Physical
Address(PA)

Memory
Contents

00000 H 1 Byte
 .

0007F H
00080 H F F H

 . A 7 H
 .

 .
 .

 . 2 5 H
FFFEF H 0 0 H
FFFF0 H

 .

FFFFF H

Dedicated
and

Reserved

Reserved
and

Dedicated

Memory
open to
General
purpose

use

Slide 5: Segmentation of 80x86 systems Main-memory

- Although 80x86 supported a large
general-use memory, the absence of
addressing mechanism required it to
be divided into 16D, 64KB segments

- Only four of these 64KB segments
remain active at a time and can be
accessed by the 80x86 processor.

- These active segments are named:
(a)Code Segment: Stores instruction codes

(b)Stack Segment: Temporary information

(c) Data Segment: Stores program data

(4) Extra Segment: Also for data storage

- Thus, Four segment give a maximum of 256 Kilo-Byte of active memory
storage, of which 64 Kilo-Byte are for storing program instruction codes, 64 Kilo-
Byte are for stack storage and 128 Kilo-Byte are for storing program data.

Physical
Address(PA)

Memory
Contents

00000 H 3 6 H
 .

0FFFF H 5 0 H
10000 H F F H

 .
 1FFFF H A 7 H

E 7 H 20000H
 .
 2FFFF H 2 5 H

.
F0000 H 0 0 H

 .

FFFFF H 1 3 H

1st
64KByte
Segment

16th
64KByte
Segment

2nd
64KByte
Segment

3rd
64KByte
Segment

.

.

.

Slide 6: Segmentation of 80x86 systems Main-memory (cont’d)

- The 64 KByte (65535H=FFFFH)
segments are allowed to be
contiguous, adjacent, disjointed and
partially or totally overlapping to
each other.
- This point of overlapping segments will be

clear in the lecture about DEBUG or Turbo

Debugger.

- The only restriction in allocating
segments are to have a ‘0H’ number
as the least-significant hex-digit of
the Base address (the P.A pointing
to the beginning of any segment)
- Thus, Base address are the starting

address of any 64 KByte segment.

- Physical address are also expressed interims of its segment base
part (that is left most 4 hex digits of base address) and offset part (that is

displacement between the base address and the pointed memory location)

Thus, a data segment memory location with PA=22356H can also be
written as 2000H:2356H, where segment base=2000H & offset is 2356H

Physical
Address(PA)

Memory
Contents

 H00000 3 6 H
 . .

0FFFF H 5 0 H

 H01000 F F H
 . .

 1FFFF H A 7 H
E 7 H H 0 2000

 . .
 2FFFF H 2 5 H

H 03000 0 0 H
 .

 3FFFF H 1 3 H
40000 H

 Not used

FFFFFH

CODE
Segment
(64 KByte)

EXTRA
Segment
(64 KByte)

STACK
Segment
(64 KByte)

DATA
Segment
(64 KByte)

.

.

.

.

.

.

.

Slide 7: Input-output Ports of 80x86’ system:

- The 8086/8088 processors
supports 64 Kbyte (65535H=FFFFH)
byte-wide input/output (I/O) ports,
accessed by dedicated instructions.

- In the software model of 80x86
systems, input-output ports are
considered to be byte address
spaces, either as part of the main
memory or as an isolated device.

- The storage/retrieval techniques
of byte and word data’s are similar to
that of main-memory of 80x86 processor

- More information on the operation and classes of input output address spaces

are given in later modules of this course.

Physical
Address(PA)

I/O
Contents

0000 H 1 Byte
 0001 H A 7 H

0002 H 5 0 H
0003 H F F H
 .

 .

 .
 .

64 K Byte
address
spaces

 FFFE H 2 5 H
FFFF H 0 0 H

Slide 9: Software Model of the CPU in an 80x86 system:

- The software model of CPU
consists of a number of 16-bit
registers for dedicated operation.
- These internal registers are shown in
the figure. Note that they are grouped
according to their functions as will be
explained later.

- The 2nd group of four registers is
called Data-registers (AX … DX)
and stores intermediate results, to
be acted upon by next instruction.

- The 1st group of registers (DS ..)
is called segment registers, which
combines with ‘IP’ or the 3rd group
of registers (SP… DI) to generate
physical addresses (PA’s) of main
memory storage locations.

- The programmer should know
the purpose, functions, operations and limitation of these registers.

- The detail definitions of these registers are given in the next section.

Slide 10: Software Model: Definition of CPU registers:

- Code Segment Register (CS) stores the leftmost sixteen-bits (4-hex
digits) of the base address related to the 64-KByte Code segment
memory locations. Remember that the base addresses of any
segments are restricted to have a “0H” as the rightmost hex-digit.

- In Slide 5, it is already shown that the base address consist of the four left-most
hex digits with a “0H” as the Least significant (or rightmost)hex digit

- Instruction Pointer register (IP) is a 16-bit register that stores the
offset part of the physical address, which when combined with the CS
register values, generates the physical address that points to memory
locations within the 64-KByte Code Segment area.
- The method used to combine the values of IP and CS to generate the PA will
be illustrated in next lecture of this module..

- Data Segment Register (DS) stores the leftmost sixteen-bits of the
base address related to the 64KByte Data segment memory locations

Slide 11: Software Model: Definition of CPU registers (cont’d)

- Extra Segment register (ES) stores the leftmost sixteen-bits (4-hex
digits) of the base address related to the 64-KByte Extra segment
memory locations. (as the rightmost hex-digit of this PA is “0H”)

- Source Index register (SI) stores the offset address part of the
physical address, which when combined with either DS or ES register
contents, points to the source data stored within the 64-KByte Data or
Extra Segment memory locations, respectively.

- Destination Index register (DI) stores the offset address part of the
physical address, which when combined with either DS or ES register
contents, points to the destination data stored within the 64-KByte
Data or Extra Segment memory locations, respectively.

Slide 12: Software Model: Definition of CPU registers (cont’d)

- Stack Segment register (SS) stores the leftmost sixteen-bits (or 4-
hex digits) of the base address related to the 64-KByte Stack
segment memory locations. (as rightmost hex-digit of this PA is “0H”)

- Stack Pointer Register (SP) and Base Pointer Register (BP) stores
the offset part of the physical address, which when combined with the
values of SS-register, generates the physical address that points to
memory locations within the 64-KByte Stack Segment area.
- The difference between SP and BP will become clear in the lecture discussing
Addressing modes.

- Data register (AX, BX, CX, DX) are 16-bit general purpose registers
used for arithmetic calculations, temporary data storage, data transfer
and special instructions.
- Further detail of data registers are presented in next slide.

Slide 13: Software Model: Definition of CPU registers (cont’d)

- The names of these data registers come from their functions:

o AX is called Accumulator register and is the most commonly
used register. This is also use for special instructions like MUL,
DIV, CBW, LAHF, IN, OUT etc.

o BX is called Base register and used by several addressing
modes and special instruction like XLAT.

o CX is called the counter register and used by special
instructions like LOOP, SHIFT etc.

o DX is called the Data register are used by special instructions
like MUL, DIV, IN etc.

- The purpose and functions of these assembly language instructions will be
introduced in module 2.

- All of these four 16-bit registers can be accessed as a whole for
word-data operation or as two 8-bit registers for byte-data operation.
Such as; (AX)word = (AH)byte (AL)byte ; (BX)word = (BH)byte (BL)byte ;
 (CX)word = (CH)byte (CL)byte ; (DX)word = (DH)byte (DL)byte ;

- Thus, if AX = 23F5H, this means AH = 23H and AL = F5H

The Least-Significant-Byte of AX is stores in AL register AND Most-Significant-
Byte of AX is stores in AH register

Slide 14: Software Model: Definition of CPU registers (cont’d)

- Status Register (SR), also called flags register, reports the status of
the flags after the execution of every instruction.

- Often SR register values determine the result of the executed
instruction. Such as carry/borrow information for arithmetic instruction

- In 80x86 model, the 16-bit status or flag register is defined as:

Bit 15 TF DF IF OF SF ZF AF PF CF

(a) Carry Flag (CF): If Carry or Borrow occurred from the MSB of

resulted DATA, then CF=CY=1 (set) otherwise CF=NC=0 (reset)
Example: 10001111B +11110000B = 01111111B and CF CY

(b) Parity FLAG (PF): If the number of binary ‘1’s’ in the resulted

DATA is even then PF=PE=1 (set) otherwise PF=PO=0 (reset).
 Example: 10001111B +11110000B = 01111111B and PF PO

Slide 15: Software Model: Definition of CPU registers (cont’d)

(c) Auxiliary FLAG (AF): If Carry or Borrow occurred from the

M.S.Nibble of resulted DATA then AF=AC=1(set) else AF=NA=0
 Example: 10001111B +01001000B = 11010111B and AF AC

(d) Zero FLAG (ZF): If the execution of previous instruction results

in a DATA=0, then ZF=ZR=1 (set), otherwise ZF=NZ=0 (reset).
 Example: 00000001B -00000001B = 0B and ZF ZR

(e) Sign FLAG (SF): If the MSB of resulted signed DATA is “1B”,

then SF=NG=1 (negative data) otherwise SF=PL=0 (≈positive).
 Example: 10000001B +00000001B = 10000010B and SF NG

(f) Overflow FLAG (OF): Indicates that Signed data is out of range.

(g) Direction FLAG (DF): Auto-decrement or Auto Increment in

address after execution of string operation; DN=1 (set) or UP=0

(h) Trap FLAG (TF) decides operating mode (single-step or continues)

- The advantages of these flags will become clear during executing arithmetic
and shift instructions, covered in later modules.

Slide 17: Reminder:

(PA)in Code-Segment memory = CS*10 + IP; (PA)in Data-Segment = DS*10 + SI = DS*10 + DI
(PA)in Extra-Segment memory = ES*10 + SI = ES*10 + DI; (PA)in Stack-Segment = SS*10 + SP;

20 Bit Physical Address pointing to Memory = Related Segment Register value * 10 + Offset Register value

 20-bit Physical address = 10*16-bit segment base address + 16-bit offset or effective address.

 Note that the lowest nibble (or lowest hex digit) of the base address (lowest-
 -physical address of a segment) should be “0H” (PA)Seg Base = 12340H

