Handout 4

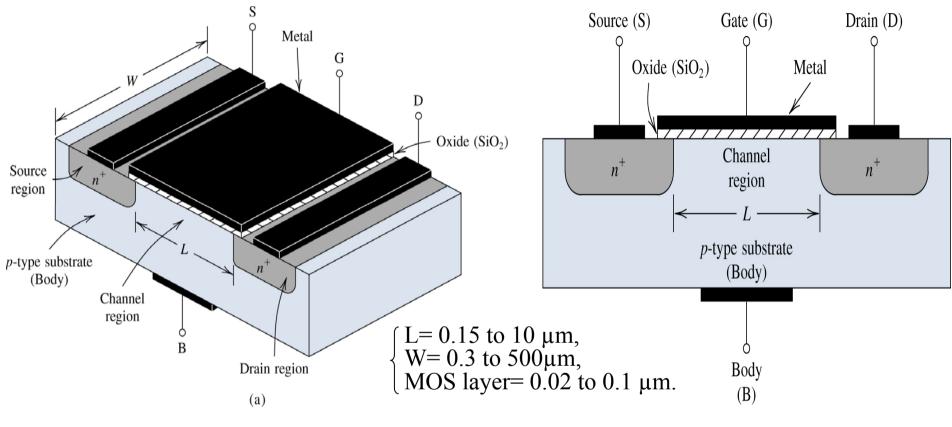
MOSFET

Sheikh Sharif Iqbal

(Ref: Text book and KFUPM Online course of EE-203)

(Remember to solve all the related examples, exercises problems as given in the Syllabus)

<u>Chapter 4</u> – MOS Field-Effect Transistors (MOSFETs)


Text book: "Microelectronic Circuits by Sedra and Smith

- Metal-Oxide semiconductor Field-Effect Transistors (MOSFETs):
- MOSFET has been extremely popular since the late 1970s. Like transistors, the current flow between two terminals (Drain to source) in MOSFET are controlled by the third terminal (gate)

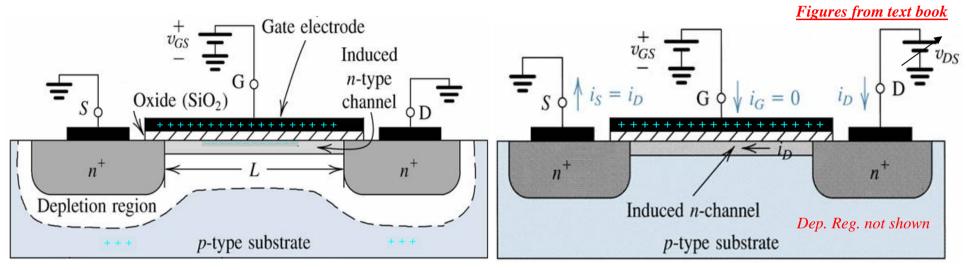
- Why MOS Transistors?

- Takes smaller silicone area on the IC
- Simple to manufacture
- No need for biasing resistors.
- Used in VLSI (very-large-scale integration)
- Comparison between MOSFET & BJT??
 - Can be made smaller /higher integration scale
 - Easier to fabricate /lower manufacturing cost
 - Simpler circuitry for digital logic and memory
 - Inferior analog circuit performance (lower gain)

- Most digital ICs use MOS technology.
- Also recently more
 and more analog
 circuits are
 implemented in MOS
 technology for lower
 cost integration with
 digital circuits in the
 same chip (IC)

4.1:Device Structure of MOSFET: The name of MOS is apparent from figures

• Four Terminals are Gate, Drain, Source & Body


Figures from text book

(b)

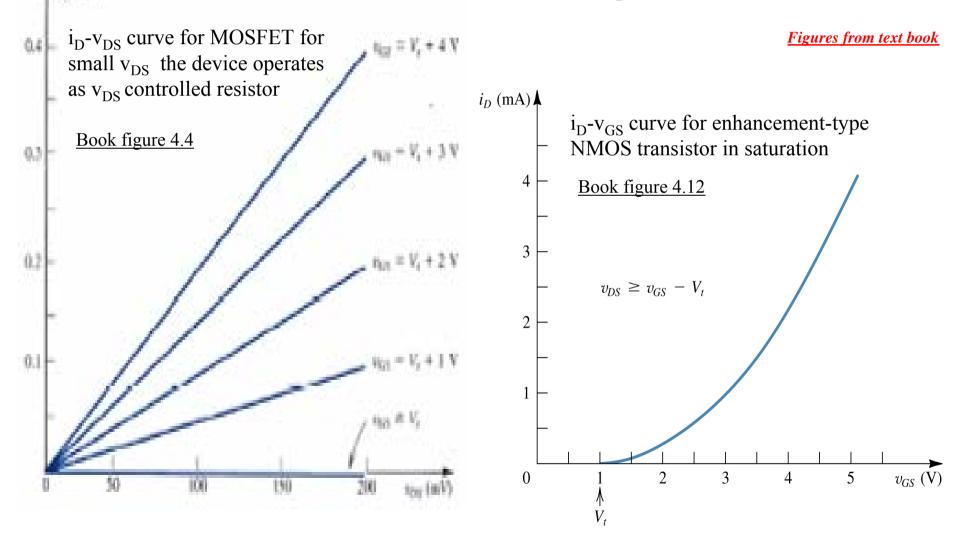
- Unlike BJT, MOSFET is normally constructed as a symmetrical device (DS)
- Minimum achievable value of L in a particular MOS technology is often referred as the **feature size**. Intel Pentium-4 uses 0.13 μ m technology.
- Lately poly-silicon with high conductivity is used instead of metal to form gates

BASIC OPERATIONAL THEORY OF NMOS: *N-channel MOSFET considered*

- The current controlled mechanism (*for drain current*) is based on electric field established by the voltage ' V_{GS} ' applied to control terminal (*gate*).
- Current (i_D) is conducted by only one type of carrier "electrons (*for NMOS or N-channel MOSFET*) or holes (*for PMOS*)". So FET is also called unipolar transistors

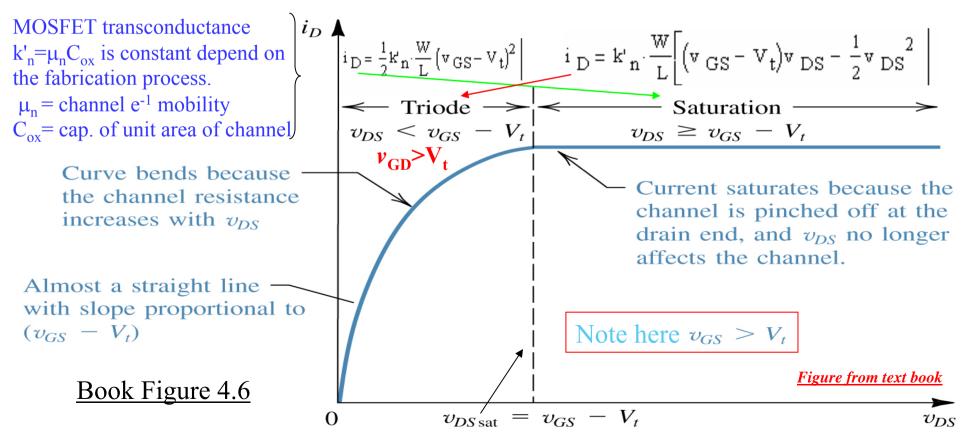
Physical Operation with No v_{GS} : With no bias voltage is applied to gate, two back-toback diodes between drain & source prevent the flow of i_D as v_{DS} is applied. ($R_{DS} \approx 10^{12} \Omega$)

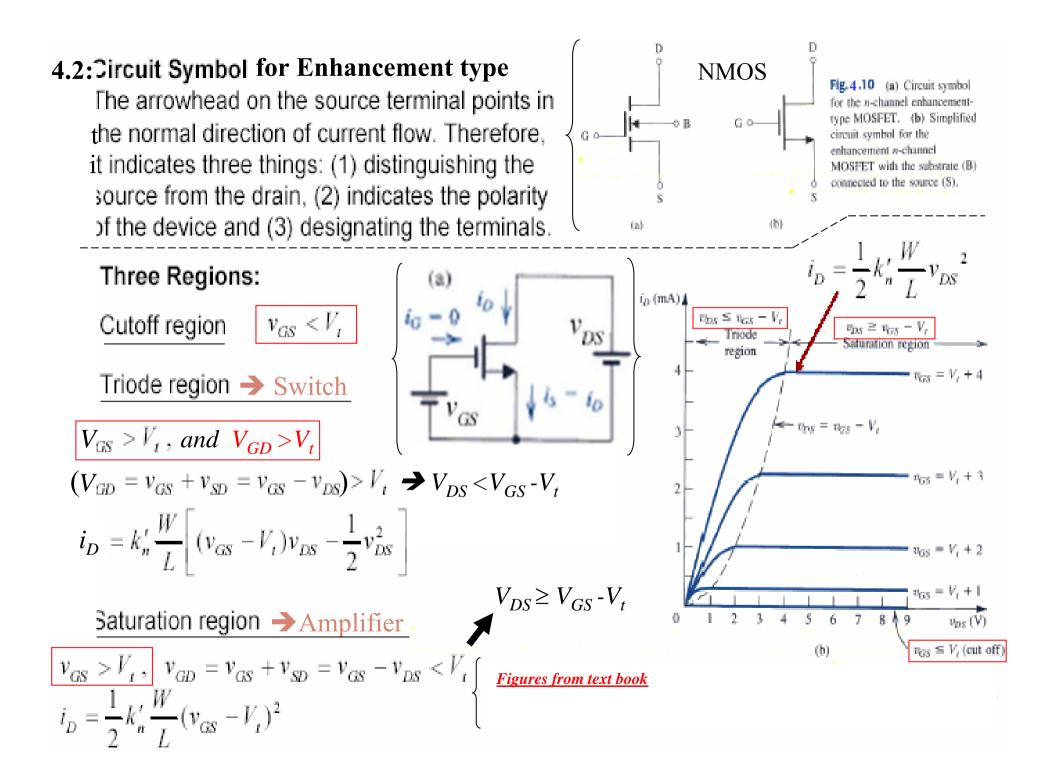
Creating a Channel for i_D **flow:** If 'S' & 'D' are GNDed and a '+ v_{GS} ' is applied to 'G' holes are repelled from the channel region, leaving behind a carrier-depletion region.


Further increasing V_{GS} attracts minority carrier (e⁻¹'s) from P-substrate into the channel region. When sufficient amount of e⁻¹'s accumulate near the surface of the substrate under the gate, an *N* region (*N*-channel) is created-called as the **inversion layer**.

Applying a Small \mathbf{v}_{DS} or if $\mathbf{v}_{DS} \approx (0.1 \text{ or } 0.2 \text{ V})$ causes a current i_D to flow through the induced *N*-channel from D to S. The magnitude of i_D depends on the density of electrons in the channel, which in turn depends on \mathbf{v}_{GS} . For $\mathbf{v}_{GS} = \mathbf{V}_t$ (*threshold voltage*), the channel is just induced and the conducted current is still negligibly small. As, $\mathbf{v}_{GS} > \mathbf{V}_t$, depth of the channel increases, i_D will be proportional to ($\mathbf{v}_{GS} - \mathbf{V}_t$), known as **effective voltage**. Increasing \mathbf{v}_{GS} above \mathbf{V}_t enhances the channel, hence it is called **enhancement type MOSFET**. Note that $i_G = 0$, due to M.O. layer

-Now since the v_{DS} drops across the channel length, this voltages decreases from vDS to 0 volt, as we travel along the channel from drain to source. Thus the voltage between the gate and the points along the channel becomes: v_{GS} -0 at source end and v_{GS} - v_{DS} at the drain end. This shows that the channel don't have even depth, as the depth depends on voltage. Now increasing v_{DS} beyond v_{GS} value causes channel to pinchoff


- THUS, $(v_{GS} - v_{DS}) > V_t$, or $v_{DS} < (v_{GS} - V_t)$ or $v_{GD} > V_t$ produce continues channel depth at drain end and results the MOSFET to operate in Triode region. Otherwise the MOSFET operates in Saturation region with pincoff channel and $i_D \not \otimes v_{DS}$ **Channel length Modulation:** If v_{DS} is further increased from pinched-off channel (v_{DSsat}) , the channel length is reduced (by moving from drain end). This phenomena is known as "channel length modulation" & its affect on i_D is incorporated by " λ "


Note: Most of the problems here will assume $\lambda=0$

Physical Operation of Enhancement NMOS: For increasing v_{DS} . Thus, v_{DS} appears as a voltage drop across the channel. Voltage across the oxide decreases from v_{GS} at 'S' to $(v_{GS} - V_t)$ at 'D'. The channel depth will be tapered and become more tapered as v_{DS} is further increased.

Eventually, when $(v_{GS} - v_{DS}) = V_t$, the channel will be **pinched off (see** figures 4.5 & 4.7) Increasing v_{DS} beyond this value has no effect as i_D saturates. Thus, MOSFET is now operating in the **saturation region**. Thus, $v_{DSsat} = v_{GS} - V_t$

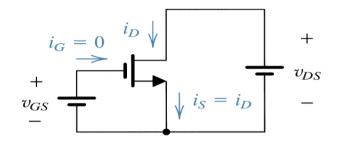
Example: Use triode expression of i_D , given in eq 4.5(a), to calculate r_{DS}

For Triode Region

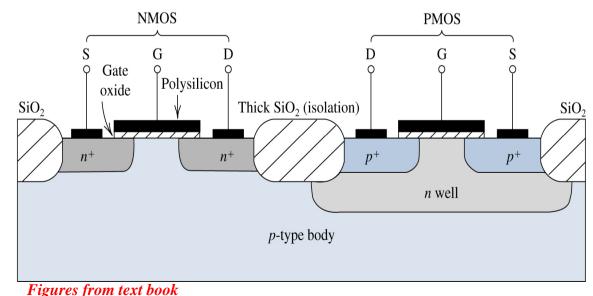
$$\mathbf{i}_{\mathrm{D}} = \mathbf{k}_{\mathrm{n}} \cdot \frac{\mathbf{W}}{\mathbf{L}} \left[\left(\left(\mathbf{v}_{\mathrm{GS}} - \mathbf{V}_{\mathrm{t}} \right) \right) \cdot \mathbf{v}_{\mathrm{DS}} - \frac{1}{2} \cdot \mathbf{v}_{\mathrm{DS}}^{2} \right]$$

However for small v_{DS} , then $\frac{1}{2} \cdot v_{DS}^{2}$ approaches zero. The resulting equation then is

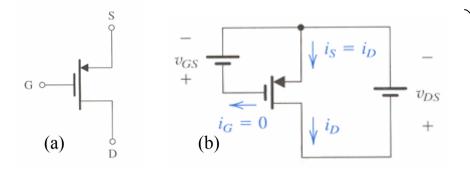
$$\mathbf{i}_{\mathrm{D}} = \mathbf{k}_{\mathrm{n}} \cdot \frac{\mathbf{W}}{\mathbf{L}} \Big[\big(\big(\mathbf{v}_{\mathrm{GS}} - \mathbf{V}_{\mathrm{t}} \big) \big) \cdot \mathbf{v}_{\mathrm{DS}} \Big]$$


To find the drain-to-source resistance

 $\mathbf{r}_{\mathrm{DS}} = \frac{\mathbf{v}_{\mathrm{DS}}}{\mathbf{i}_{\mathrm{D}}} \quad \left\{ \begin{array}{c} \text{if other parameter are given} \\ \text{We can solve this } \mathbf{r}_{\mathrm{DS}} \end{array} \right.$


<u>CMOS</u>: Cross section of a complementary MOS integrated circuit. Note that the PMOS transistor is formed in a separate *n*type region, known as an *n* well. Another arrangement is also possible in which an *n*-type body is used and the *n* device is formed in a *p* well.

Exercise 1: For Enhancement type NMOS with V_t = 1V and $k'_n(W/L) = 0.5 \text{ mA/V}^2$, find i_D and whether the circuit below is operating as a *switch* or an *amplifier*.


(a) if
$$V_{GS} = 4v$$
 and $V_{DS} = 2v$
(b) if $V_{GS} = 4v$ and $V_{DS} = 6v$

- Remember for symbol and similar circuit for PMOS, read book pg 256 and 258

Physical Operation of Enhancement PMOS: P-channel MOSFET.

(a) Simplified PMOS circuit symbol with connected source & body. (b) PMOS circuit. Note that v_{GS} and v_{DS} are negative and i_D flows out of drain Since in PMOS, V_t is negative, So $v_{GS} \le V_t$ is used to induces a channel. Thus, $v_{SG} \ge |V_t|$

To operate in **Triode region**:

 $v_{DS} \ge v_{GS} - V_t \quad \text{(Continuous channel)}$ $i_D = k_p' \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$

where v_{GS} , V_t , and v_{DS} are negative and $k'_p = \mu_p C_{ox}$

To operate in **Saturation region**:

 $v_{DS} \le v_{GS} - V_t$ (Pinched-off channel) or $v_{GD} > V_t$ $i_D = \frac{1}{2} k_p' \frac{W}{L} (v_{GS} - V_t)^2 (1 + \lambda v_{DS})$ Neglecting λ , $i_D = \frac{1}{2} k_p' \frac{W}{L} (v_{GS} - V_t)^2$

Thus to recap PMOS operation, the gate voltage has to be made lower than that of the source by at least $|V_t|$. To operate in Triode region, the drain voltage has to exceed the gate voltage by at least $|V_t|$, other wise the PMOS operates in Saturation region.

Exa 4.6: Design the circuit of Fig. 4.24 so that the transistor operates in saturation with $I_D = 0.5$ mA and $V_D = +3$ V. Let the enhancement-type PMOS transistor have $V_t = -1$ V and $k'_p(W/L) = 1$ mA/V². Assume $\lambda = 0$. What is the largest value that R_D can have while maintaining saturation region operation?

The figure is given in next page:

Sol: $V_{GS} = -2 \text{ V}$: $R_{G1} = 2 \text{ M}\Omega$ and $R_{G2} = 3 \text{ M}\Omega$. $R_D = 8 \text{ k}\Omega$

Saturation until $V_D + |V_t| > V_G$ See book pg 268 for solution

4.2.5 & 4.2.6: some Practical Considerations of Enhancement MOS

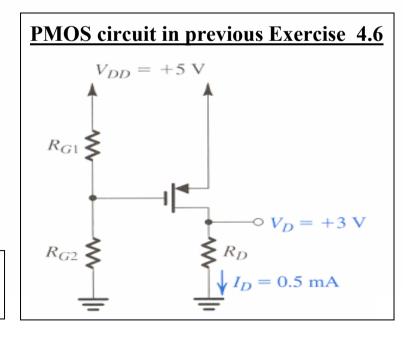
The Body Effect

In ICs, the substrates of all NMOS are usually common and connected to the most negative power supply. If a source is not at this voltage level, the reverse-bias voltage V_{SB} between S and B will widen the depletion region and in turn reduces the channel depth. The result is an increase of V_t :

$$V_t = V_{t0} + \gamma \left(\sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right)$$

where $V_t = V_{t0}$ with $V_{SB} = 0$,

 ϕ_f is a physical parameter with $2\phi_f$ typically 0.6V, and γ is a fabrication - process parameter.

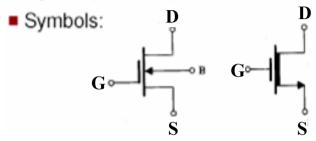

It follows that the body voltage controls i_D; This is an undesired phenomenon know as the **body** effect.

Same situation exists in PMOS.

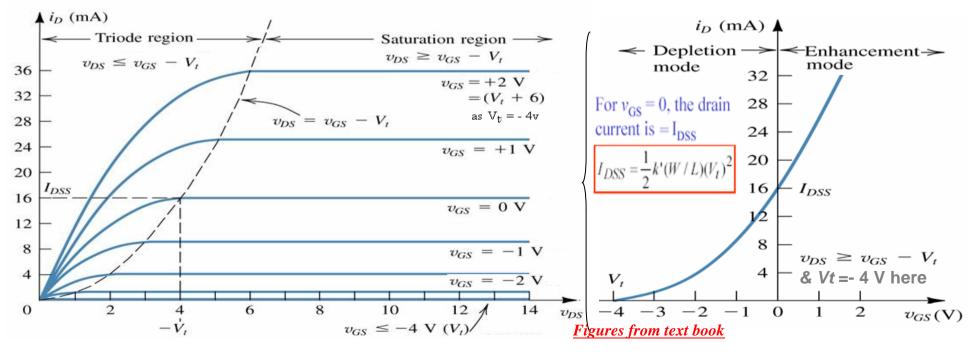
Body effect can cause considerable degradation in circuit performance (as shown in chapter 6 of book)

Temperature Effects

Both V_t and k' are temperature sensitive. The magnitude of V_t decrease by about 2mV for every 1°C rise in temperature. This decrease in $|V_t|$ gives rise to a corresponding increase in drain current as temperature is increase. However, because k' decreases with temperature and its effect is a dominant one, <u>the</u> overall observed effect of a temperature increase is a decrease in drain current.



4.11: Depletion Type NMOS or n-channel MOSFET's:


The depletion type MOSFET has similar structure to that of *enhancement* type but with a <u>physically</u> <u>implanted</u> channel (*instead of an induced channel*). Thus an n-channel depletion-type MOSFET always has an

n-type silicone region connecting the source and drain (both +n) at the top of the type substrate. Thus, for any

- Normally-ON device
- A thin n-channel layer is implanted
- V_t is negative for NMOS

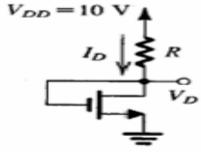
 $v_{\rm DS}$ applied between the drain and source, $i_{\rm D}$ flows even if $v_{\rm GS} = 0$. Thus, the channel depth and hence its conductivity is controlled by $v_{\rm GS}$. Applying a '+ $v_{\rm GS}$ ' enhances the channel by attracting more e⁻¹'s. Applying '- $v_{\rm GS}$ ' is said to deplete/reduce the channel.

4.3: MOSFET circuits at DC:

EXAMPLE Design the circuit of Fig. 4.20, so that the transistor operates at $I_D = 0.4$ mA $V_D = 1$ V. The NMOS transistor has $V_f = 2$ V, $\mu_n C_{ox} = 20 \ \mu A/V^2$, $L = 10 \ \mu m$, and $W = 400 \ \mu m$. Neglect the channel-length modulation effect (i.e., assume that $\lambda = 0$).

Since $V_D = 1$ V means operation in the saturation region, we use the saturation-region expression of i_D to determine the required value of v_{GS} , $a_{S} v_{CD} < V_{t}$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_l)^2 \implies 0.4 = \frac{1}{2} \times 20 \times 10^{-3} \times \frac{400}{10} (V_{GS} - 2)^2$$


This equation yields two values for V_{GS} , 1 V and 3 V. The first value does not make physical sense since it is lower than V_r . Thus $V_{GS} = 3$ V. Referring to Fig. 4.20, we note that the gate is at ground potential; thus the source must be at -3 V, and the required value of R_S can be determined from

A $V_{DD} = 5 V$ $I_D \downarrow R_D$ $I_D \downarrow R_D$ $I_D \downarrow R_S$ $V_{SS} = -5 V$

 $R_{S} = \frac{V_{S} - V_{SS}}{I_{D}} = \frac{-3 - (-5)}{0.4} \begin{cases} \text{To establish a dc voltage of } +1 \text{ V at the drain, we must select } R_{D} \text{ as } \\ R_{D} = \frac{V_{DD} - V_{D}}{I_{D}} = \frac{5 - 1}{0.4} = 10 \text{ k}\Omega \end{cases}$

EXAMPLE Design the circuit to obtain a current I_D of 0.4 mA. Find the value required for R and find the dc voltage V_D . Let the NMOS transistor have $V_t = 2 V$, $\mu_n C_{ox} = 20 \ \mu \text{A/V}^2$, $L = 10 \ \mu \text{m}$, and $W = 100 \ \mu \text{m}$. Neglect the channel-length modulation effect (that is, assume $\lambda = 0$).

SOLUTION Because $V_{DG} = 0$, the FET is operating in the saturation region. Thus $I_{\rm D} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_l)^2$ $0.4 = \frac{1}{2} (20)(10^{-3})(100/10)(V_{GS} - 2)^2$

which yields two values for V_{GS} , namely 4 and 0. The second value obviously does not make physical sense since it is lower than V_t .

Thus $V_{GS} = 4 \text{ V}$, and the drain voltage will be $V_D = +4 \text{ V}$

The required value for R can be found as follows:

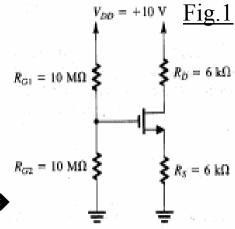
vs: $R = \frac{V_{DD} - V_D}{I_D} = \frac{10 - 4}{0.4} = 15 \text{ k}\Omega$

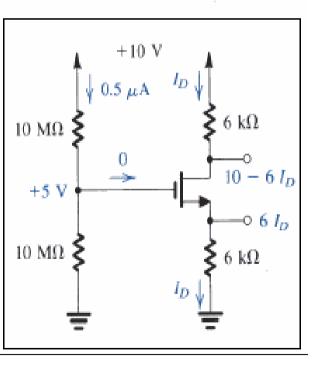
4.3: MOSFET circuits at DC:

EXAMPLE Analyze the circuit shown to determine the voltages at all nodes and the currents through all branches. Let $V_t = 1$ V and $k'_n(W/L) = 1$ mA/V². Neglect the channel-length modulation effect (i.e., assume $\lambda = 0$).

SOLUTION Since the gate current is zero, the voltage at the gate is simply determined by the voltage divider formed by the two 10-M Ω resistors,

$$V_G = 10 \times \frac{10}{10 + 10} = +5 \text{ V} \implies V_{GS} = 5 - 6I_D \Rightarrow \text{Assume Saturated} \Rightarrow$$


Thus $I_D = \frac{1}{2}k_n \frac{W}{L}(V_{GS} - V_t)^2 = \frac{1}{2} \times 1 \times (5 - 6I_D - 1)^2$

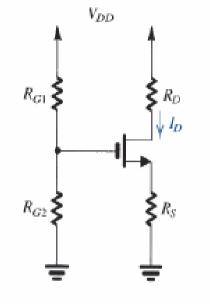

which results in the quadratic equation : $18I_D^2 - 25I_D + 8 = 0$

This equation yields two values for I_D : 0.89 mA and 0.5 mA. The first value results in a source voltage of 6 × 0.89 = 5.34, which is greater than the gate voltage and does not make physical sense. Thus $as \quad \{v_{GS} = (v_G - v_S)\} > V_t$

$$I_D = 0.5 \text{mA}$$
$$V_S = 0.5 \times 6 = +3\text{V}$$
$$V_{GS} = 5 - 3 = 2\text{V}$$
$$V_D = 10 - 6 \times 0.5 = +7\text{V}$$

Since $V_D > V_G - V_t$, the transistor is operating in saturation, as initially assumed.

Exercise-2: Solve the above problem in Fig.1, after replacing NMOS with PMOS (*Pchannel MOSFET*) with $V_{t(PMOS)} = -1v$. *Hint: see example 4.5 (NMOS) & 4.6 (PMOS) solutions*

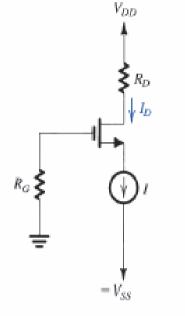


Summary of DC biasing a MOS amplifier in discrete circuits:

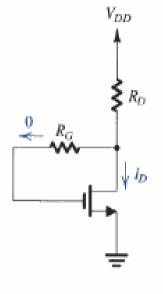
 V_{DD}

 R_{D}

 $\sum R_{s}$

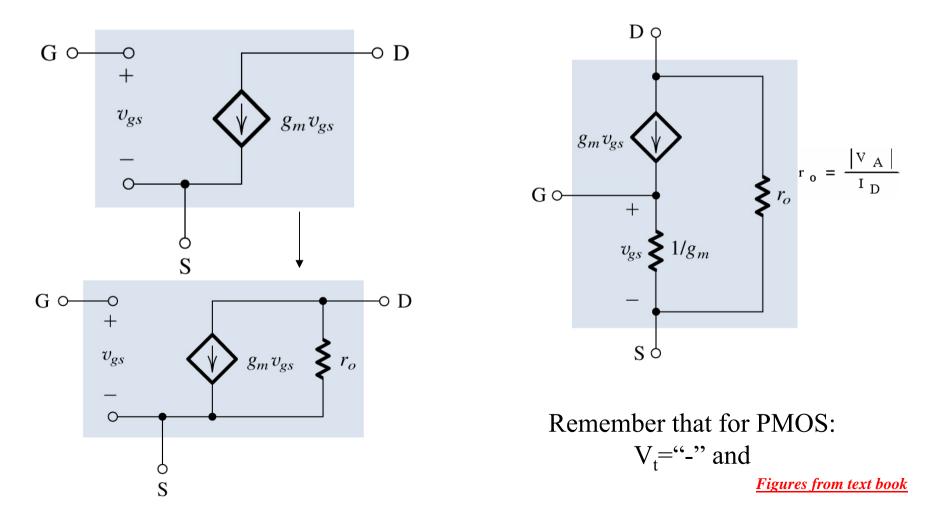


- Single power suppler
 Since I_G=0, R_{G1} and
 R_{G2} can be very large, allowing large R_{in}
- R_s provides negative feedback
- R_D should be large for high gain and should be small for large signal swing.


- Two power suppliers
- Simpler bias arrangement.

₹ R_G

 R_G establishes a dc ground and presents a high input resistance to a signal that may be capaci-tively coupled to the gate.


- Even simpler and more direct bias.
- A constant-current source I feeds the source terminal.

- Large resistor R_G forces the V_G to be equal to V_D.
 The output signal
- swing should be limited in the negative direction to |V_t|.

4.6: Small signal models for MOSFET amplifier:

- (a) neglecting the dependence of i_D on v_{DS} in saturation region of operation (channel-length modulation effect);
- (b) including the effect of channel-length modulation modeled by output resistor (r_o)
- (c) T-model with output resistance, $r_o = /V_A / / I_D = 1 / (\lambda . I_D)$

MOSFET transconductance

Formula 1: $g_m = k'_n \frac{W}{L} (V_{GS} - V_t)$ It indicates that g_m is proportional to the k', W/L ratio and $(V_{GS} - V_t)$ However, a large V_{GS} reduces the allowable signal swing at the drain.

Formula 2:
$$g_m = \sqrt{2k'_n} \sqrt{\frac{W}{L}} \sqrt{I_D}$$

It shows:

- for a given MOSFET, g_m ∞ the square root of the dc bias current.
- (2) At a given bias current, g_m ∞ W / L

In contrast, the g_m of BJT ∞ the biasing current I_c and is independent of the geometry.

Remember for PMOS, the calculation of g_m , r_o and K'_n is calculated using $|(V_{gs}-V_t)|$, $|V_A|$ or $|\lambda|$ and replacing μ_n with μ_p , respectively. See book page 297

Here for NMOS $\rightarrow K'_n = \mu_n C_{ox}$

📫 Formula 3:

$$g_m = \frac{I_D}{\left(V_{GS} - V_t\right)/2}$$

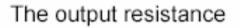
As compared with that of BJT, for which $g_m = \frac{I_C}{V_T}$

The transconductance value for MOSFET is much small than that of BJT in light of the fact that the values of (V_{GS}-V_t)/2 are at least 0.1 V or so.

In spite of their low g_m, MOSFETs have many other advantages, such as high R_{in}, small size, low power dissipation and ease of fabrication.

MOSFET As An Amplifier – Small-Signal Analysis:

Example 4.10


Figure 4.38 (a) shows a discrete enhancement MOSFET amplifier in which the input signal v_i is coupled to the gate via a large capacitor, and the output signal at the drain is coupled to the load resistance R_L via another large capacitor. We wish to analyze this amplifier circuit to determine its small-signal voltage gain and its input resistance. The transistor has $V_t = 1.5 \text{ V}, k'_n(W/L) = 0.25 \text{ mA/V}^2$, and $V_A = 50 \text{ V}$. Assume the coupling capacitors to be sufficiently large so as to act as short circuits at the signal frequencies of interest.

+15 V

Solution

We first evaluate the dc operating point as follows. $R_D = 10 \text{ k}\Omega$ As $I_G=0$, $V_{R_G}=V_{10M}=0$, Thus $V_G=V_D$. Since $V_S=0$; $V_{GS}=V_{DS}$ transistor must operate in saturation region as $V_{DS} > (V_{GS} - V_t)$ = 10 MΩ **\$** $R_L = 10 \text{ k}\Omega$ $I_D = \frac{1}{2} \times 0.25 (V_{CS} - 1.5)^2$ v_i $I_D = \frac{1}{2} \times 0.25 (V_D - 1.5)^2$ DC $V_{\rm D} = 15 - R_{\rm D}I_{\rm D} = 15 - 10I_{\rm D}$ Rin D Two solutions: I_{D1} = 1.0589 mA and V_D = 4.4 V $I_{D2} = 1.721 \text{ mA and } V_{D} < 0$ ₹r. $\{ R_D \}$ which is not physically meaningful Sm Ver ! So, $V_D = (15 - i_D * 10K) = 4.4 \text{ v} \rightarrow V_{DS} \rightarrow V_{GS}$ s R:...

The value of g_m is given by $g_m = k'_n \frac{W}{L} (V_{GS} - V_t)$ = 0.25(4.4 - 1.5) = 0.725 mA/V

$$r_o = \frac{V_A}{I_D} = \frac{50}{1.06} = 47 \, k\Omega$$

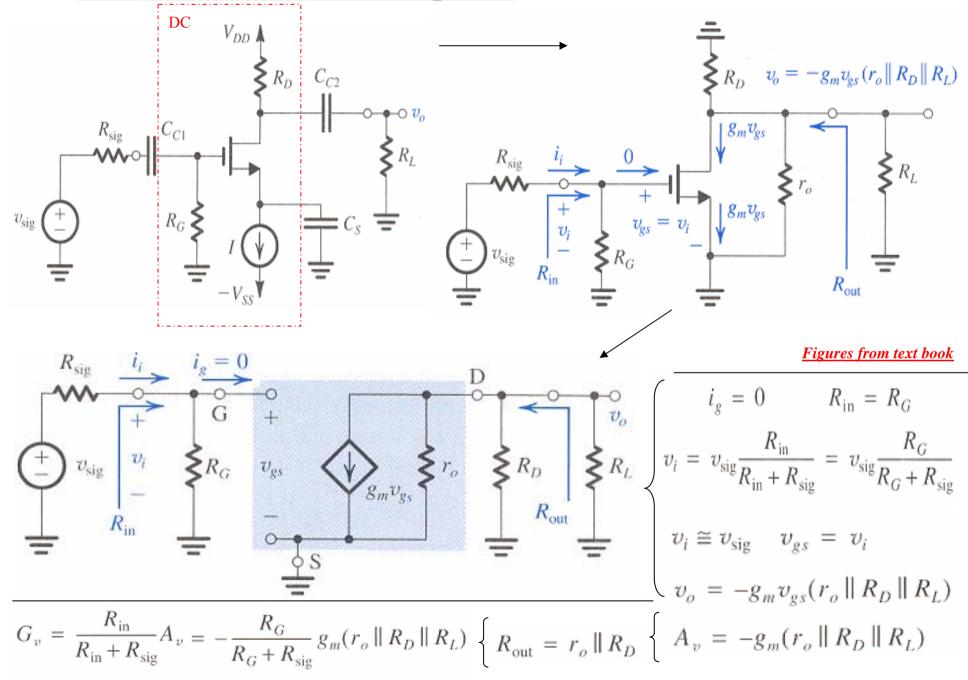
Since $v_{gs} = v_i$, the voltage gain is

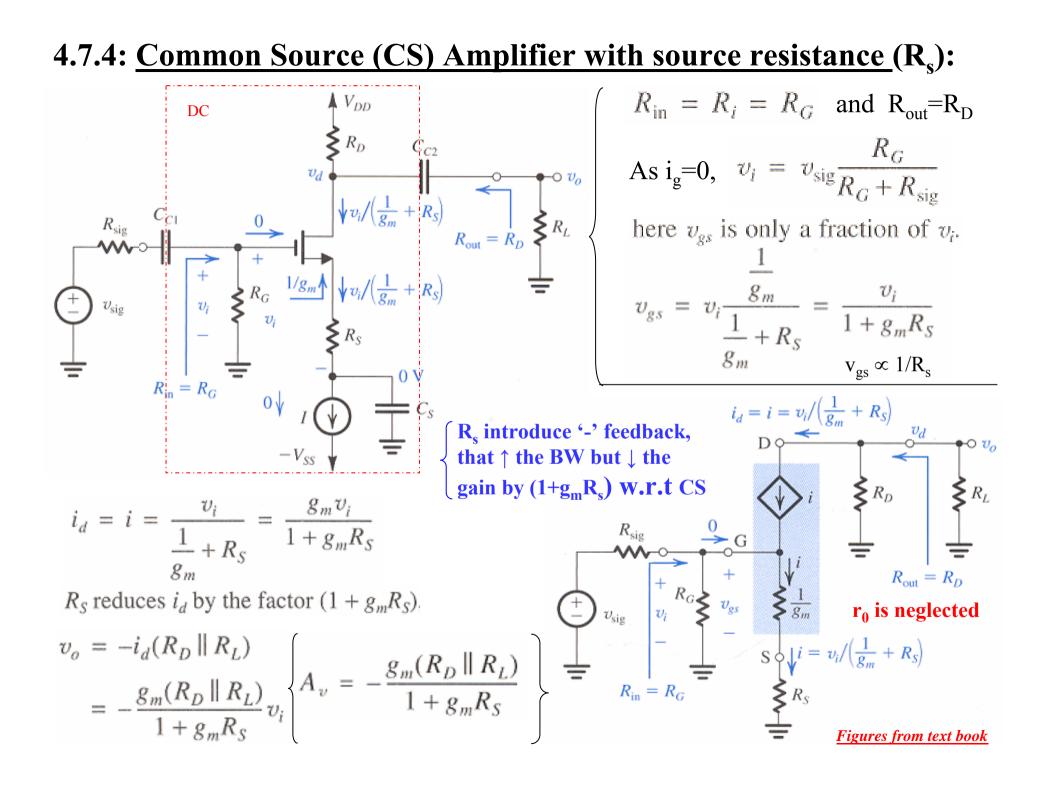
 $\frac{v_o}{v_i} = -g_m (R_D //R_L //r_o)$ = -0.725(10//10//47) = -3.3 V/V

To evaluate the input resistance R_{in} , we note that the input current i_i

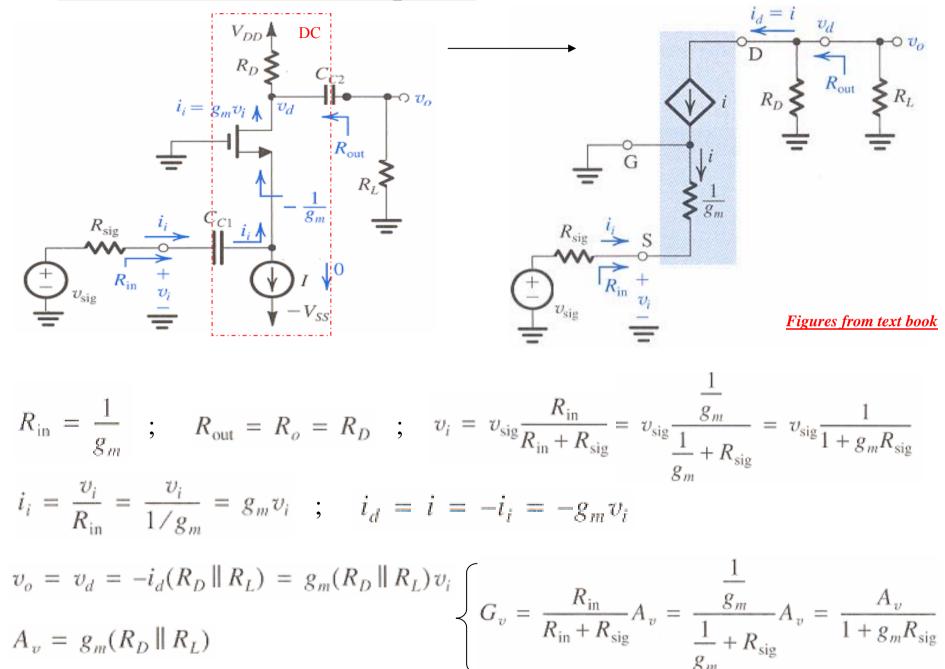
Since R_G is very large (10MΩ), the current through it can be neglected

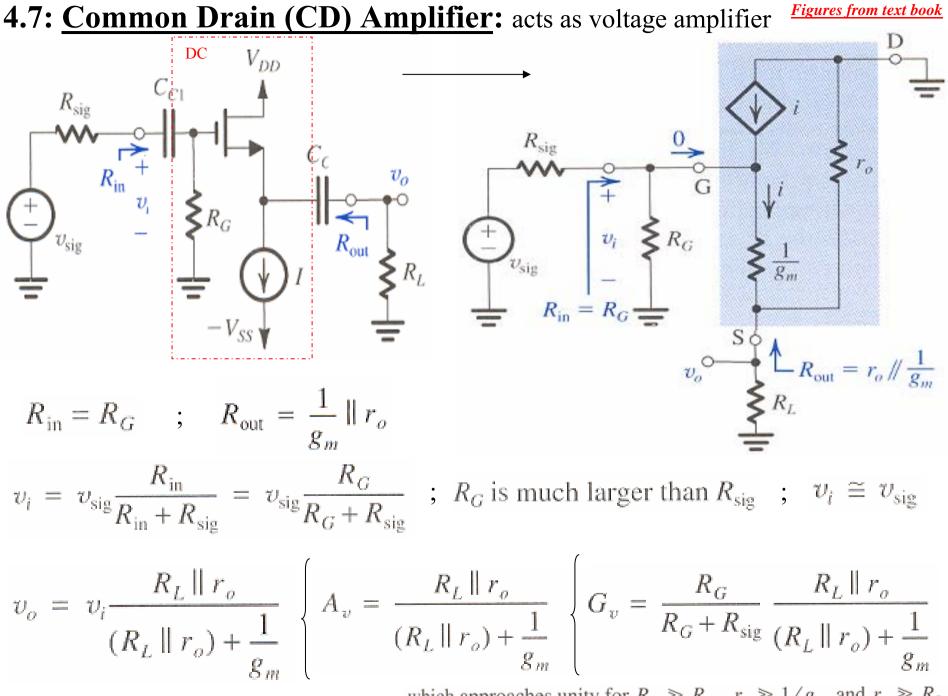
$$v_o \approx -g_m v_{gs} (R_D // R_L // r_o)$$

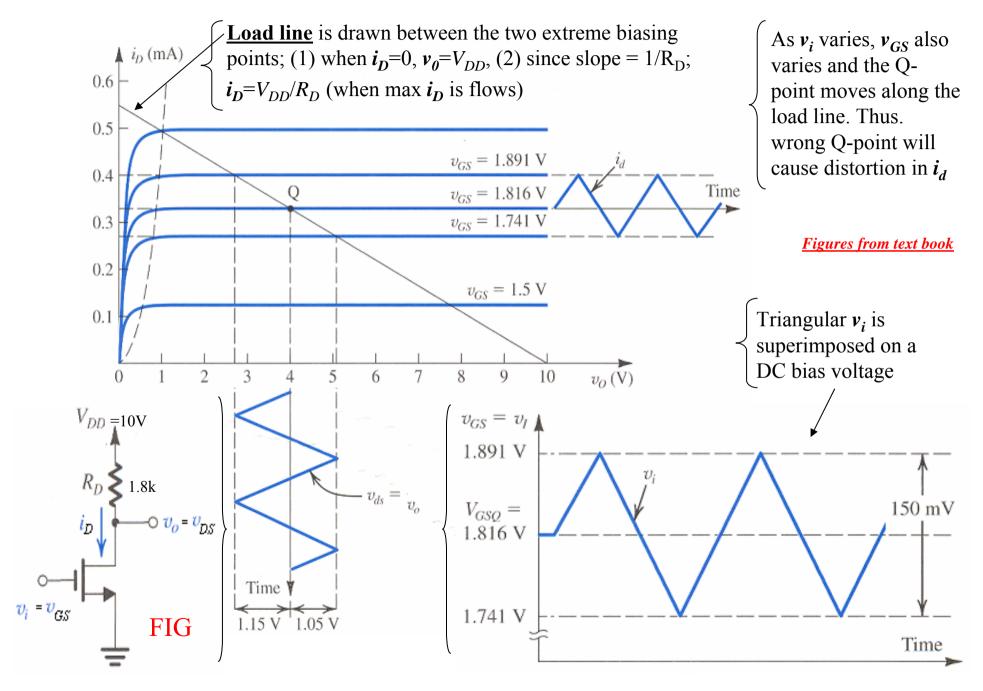

Thus,


 $i_{i} = (v_{i} - v_{o})/R_{G}$ = $\frac{v_{i}}{R_{G}} \left(1 - \frac{v_{o}}{v_{i}}\right)$ = $\frac{v_{i}}{R_{G}} [1 - (-3.3)] = \frac{4.3 v_{i}}{R_{G}}$

$$R_{\rm in} = \frac{v_l}{i_l} = \frac{R_G}{4.3} = \frac{10}{4.3} = 2.33 \,\mathrm{M}\Omega$$


- Remember channel length modulation is neglected in this solution.
- Solve exercise 4.24, 4.28 and hand-in next class.


4.7: Common Source (CS) Amplifier: Single stage MOS Analysis


4.7: Common Gate (CG) Amplifier: acts as Unity gain current amplifier

which approaches unity for $R_G \ge R_{sig}$, $r_o \ge 1/g_m$, and $r_o \ge R_L$.

4.4.4: Operation as a linear Amplifier: see page 279 of book for more explanation

