King Fahd University of Petroleum \& Minerals

Electrical Engineering Department
EE-390; Exam-2(071); 6 ${ }^{\text {th }}$ January, 2008

Prob.1	Prob.2	Prob.3	Total

Name:	Section:	I.D.

Answer all three questions, which carries equal marks. Exam TIME: 6:30 to 8:00 PM
1(a). Find the address of Port A and Port C of $0^{\text {th }}$ PPI. Show how you obtain your answers and write them in the specified box below. Assume don't care address pins are at 'logic 0 ' state.

Port A (Physical address)	(in Hex)
Port C (Physical address)	(in Hex)

**Remember to use 0's for don't cares address pins.

1(b). As shown in the previous figure, the data pins ($\mathrm{D}_{0}-\mathrm{D}_{7}$) of the scanner are connected with the $\mathrm{PA}_{0}-\mathrm{PA}_{7}$ (port A) of the $0^{\text {th }} \mathrm{PPI}$ and the strobe signal $(\overline{\mathrm{STB}})$ of the scanner is connected with the LSB of Port C, of the $0^{\text {th }}$ PPI.

Assume that once a byte-data is scanned, the scanner generates a short strobepulse (' 1 ' \rightarrow ' 0 ' \rightarrow ' 1 '), during which the computer receives the scanned databyte. (Thus, during 'logic 0 ' state of $\overline{S T B}$ signal, $P A_{0}-P A_{7}$ of the $0^{\text {th }} P P I$ receives the scanned data-byte but during 'logic 1' state, $P A_{0}-P A_{7}$ of the $0^{\text {th }}$ PPI do not receive any data from the scanner)

Write an efficient assembly language program, which will use Isolate I/O interface to operate the PPI in MODE 0 and store eleven scanned data bytes in memory location starting from physical address DS:000 A_{H}. The unused ports of the PPI should behave like output ports.

TITLE "Question 1(b)"
.MODEL SMALL
.STACK 032H
.DATA
.CODE
MOV AX, @DATA
MOV DS, AX
Line 1: \qquad

Line 14: \qquad

Use as many lines as needed (to write an efficient program).

Line 15: \qquad

MOV AX,4C00H
INT 21h
END

2(a). Execute the program up to INT 21 H instruction and find the required memory and register contents. For 'SAHF' instruction, AH is give by $=$| $\mathbf{S F}$ | ZF | $\mathbf{0}$ | AF | $\mathbf{0}$ | PF |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | CF | | | | |

```
    Title "Question 2a "
    .MODEL small
    .STACK }3
    .DATA
        VAR1 DW 0403H, 0518H, 0B2AH
        VAR2 DB 16H, A2H, B3H, 40H, 15H
        VAR3 DB 11H, 22H, 33H, 44H, 55H
    .CODE
        MOV AX,@DATA
        MOV DS, AX
        MOV SP, 00FDH
        LES AX,[VAR1]
        PUSH AX
        LEA BX,[VAR3]
        XLAT
        PUSH AX
        CALL SUB1
CS:1234: POP BX
        MOV AX, 4C00H
        INT 21H
        SUB1 PROC NEAR
                MOV AX,SP
                SAHF
                RET
        ENDP
END
```


After the program execution, find:

BX = \qquad ;

SP = \qquad ;

Carry Flag = \qquad ;

2(b). Answer the following questions in the given space below:

(i) Write a program (sequence of instructions) that will load the offset address of '4321 ${ }_{\mathrm{H}}$ ' into Instruction Pointer (IP).
(ii) When the 8086's A_{0} and $\overline{\mathrm{BHE}}$ pins are both at 'logic high' state, CPU access;
(a) Even addressed Word
(b) Odd addressed Word;
(Encircle the correct answer/answers)
(c) None of the above ;

3(a). Write the approximate steps needed to complete an Input/output Read Bus-cycle for a 8088 CPU, operating in Minimum-Mode.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3(b). For a minimum mode Write Bus-cycle, pin 28 of the CPU is sending a signal of
' $\mathrm{M} / \overline{\mathrm{IO}}$ ' = 'logic 1 '. What type of CPU is used here (8088/8086): \qquad .

3(c). If SI=1234 ${ }_{\mathrm{H}}$ and $\mathrm{DI}=9876_{\mathrm{H}}$, Write a program using 'REP' prefix' and 'String Handling Instruction', which will move 3 data-bytes starting from a physical address DS:SI to ES:DI. (Use the given lines for the program.)

Line 1:

\qquad
\qquad
\qquad

