Three assembly language program:

1) Write an assembly language program segment to implement the subtraction of two 32 -bit signed numbers. The first number, x, is stored in memory starting at DS:0100. The second number, y, is stored in (DX, CX). The result $=\mathrm{x}-\mathrm{y}$ should be stored in memory starting at DS:0200.
2) Write a program segment to compute the dot product of two vectors A and B. The components of vector A (Ax, Ay and Az) are stored in memory at address VECTOR A, those of vector B at address VECTOR B. All components are 8 -bit signed numbers. The result of the dot product (scalar) should be stored in memory starting at address RESULT. Use the most suitable addressing modes.
3) Write a program segment to implement the arithmetic function $F=4 x+z 2$. The numbers x and z are 8 -bit numbers stored in registers CL and CH, respectively. The calculated value of F should be stored in memory starting at DS:0100.
