Question 1: A transmission line has a characteristic impedance of 300Ω and is terminated in a load of $300-\mathrm{j} 300 \Omega$. The propagation constant of the line is $0.054+\mathrm{j} 3.53$ per meter. Using the given equations to calculate the following parameters;
(a) The Reflection coefficient at the load
(Answer: $0.446 \angle-63.43^{\circ}$)
(b) The Transmission coefficient at the load
(Answer: $1.26 \angle-18.43^{\circ}$)
(c) The Reflection coefficient at a point 2 m away from the load
(Answer: $0.36 \angle-152.15^{\circ}$)

Question 2: Verify the answers using solutions obtained from Smith Chart.

Question 3: A coaxial line with a polyethylene dielectric $\left(\varepsilon_{\mathrm{r}}=2.25\right)$ is to be used at a frequency of 3 Ghz and is terminated in a load of 50Ω. Assume its characteristics impedance is 50Ω, attenuation constant is $0.0156 \mathrm{~Np} / \mathrm{m}$ and phase velocity is $2 \times 10 \mathrm{~m} / \mathrm{s}$. If the generator with open-circuit voltage of 50 v (rms) and internal impdance of 50 is used to supply a 3 GHz signal to the coaxial line, then find the following;
(a) The Magnitude of sending-end and receiving-end (load) voltages (Answer: $25 \mathrm{v}(\mathrm{rms}) \& 5.25 \mathrm{v}(\mathrm{rms})$)
(b) The sending-end power and receiving-end power
(Answer: 12.5 watt and 0.55 watt)
(c) The Wavelength within the coaxial cable
(Answer: 66 mm)

Question 4: A lossless transmission line $\left(\mathrm{TL}_{1}\right)$ has a characteristic impedance of 300 Ω and is operated at a frequency of 10 GHz . After a resistive load R_{L} is used to terminate the line the observed standing-wave ration is found to be 5.0. It is proposed to use a "segment of same transmission line (TL_{T})" with $\mathrm{Z}_{0 \mathrm{~m}}=50 \Omega$ and a short-circuited stub with $\mathrm{Z}_{0 \mathrm{~s}}=50 \Omega$ to match the load with the transmission line $\left(\mathrm{TL}_{1}\right)$. Determine;
(a) Draw the figure
(b) The value of the load R_{L}
(Answer: 518.18Ω)
(c) The length of the Transmission line segment $\left(\mathrm{TL}_{\mathrm{T}}\right)$
(Answer: 0.552 cm or 0.948 cm)
(c) The length of the $\mathrm{S} / \mathrm{C} \mathrm{Stub}\left(\mathrm{TL}_{\mathrm{T}}\right)$
(Answer: 0.24 cm or 1.26 cm)

