<u>HW 1</u>	EE 407	Dr Sheikh Sharif Iqbal
Question 1:	The wavelength of a 600-MHz wav	ve propagating through a non-magnetic
	dielectric is 20 cm. What is the die	electric constant of the material?

(solution: 6.25 F/m)

Question 2: A 3-GHz uniform plane wave propagates through rexolite medium(with ε_r =2.54, μ_r =1) in the positive z direction. Find the wave length ofthe wave and related phase constant(β) (if the medium is assumed to belossless, α =0)(solution: 62.7 mm, 100.137 rad/m)

Question 3: It is proposed to silver-plate ($\sigma = 6.12 \times 10^7$ Mhos/m) a 3.048 meter length of stainless-steel (σ =0.11x10⁷ Mhos/m) wire, so as to reduce its resistance (R_{AC}) at 1-GHz. The wire diameter is 2-mm.

- (a) Approximate the <u>minimum plating thickness</u> (of silver) required to insure that the 1-Ghz signal-current in the stainless steel material is negligible.
 (solution: 6.1 μ-meter)
- (b) Assume sufficient plating to calculate the 1-GHz resistance of the wire. Compare the result to the resistance of the wire before plating. (solution: 29 Ω and 3.9 Ω)