King Fahd University of Petroleum \& Minerals

Electrical Engineering Department

EE-407; Lab final Exam

Answer all THE question. All questions carry equal marks.

Name:
 I.D.

1. Using the given components, set up the equipment and measure the insertion loss of the microstrip line.
(a) Show the setup to your instructor before you switch the power ON
OK Partially OK Not OK
(b) Measure the insertion loss in dB for the frequency of 3 GHz .

$$
\text { Insertion Loss }(\text { in } \mathrm{dB})=
$$

2. Terminate the above microstrip line with an unknown load and measure values needed to calculate the VSWR.
(a) Show the setup to your instructor before you switch the power ON
OK
Partially OK
Not OK
(b) $\mathrm{VSWR}=$ \qquad
3. (a) Write the equations used to find the coupling coefficient (in dB) and isolation (in dB) of the directional coupler shown in figure below.
(b) If this is a -10 dB directional coupler and the incident power is 1 mW , find the coupled power.

4. (a) Design a Wilkinson power divider, which will be connected to a source with a internal resistance of 150Ω and will be terminated by two loads of 150Ω each.
(b) Briefly write one major difference between the hybrid-ring coupler and Wilkinson power divider?
5. (a) Draw any circuit, with dimensions, that is used
 to provide DC bias to the microwave amplifier.
Briefly say how does it work?
(b) Draw the schematic diagram of the following structure with unknown load (R)

(c) Use the figures to find the input impedances of Z_{1}, Z_{2}, Z_{3} and Z_{4}
$\mathrm{Z}_{2}=$ \qquad

