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Abstract 

The Volterra  series  provides  a  convolution-ori- 
ented  method  for  representing  the  input/output  behav- 
ior of a  nonlinear  system.  For  the  case  of  constant 
system  parameters,  such  a  representation is naturally 
suited  to  control  design  with  transfer  functions: 
zeroth  order,  first order, second order, and so forth. 
In 1979,  Peczkowski, Sain, and  Leake [l] introduced  a 
Total Synthesis  Problem  (TSP)  approach  to  linear  feed- 
back  synthesis;  and in 1981,  Peczkowski  and  Sain  [2] 
demonstrated how to  schedule  TSP  into  a  nonlinear  con- 
troller.  For  plants  with  one  input  and  one  output, 
Al-Baiyat  and  Sain  [3]  extended  TSP  to  higher  order 
transfer  functions  for  the  class of linear  analytic 
systems. In this  paper, we complete  the  extension  by 
treating  multiple  inputs  and  multiple  outputs.  The 
method is illustrated by designing  a  control  system 
for  a DC to  AC  converter. 

Introduction 

Most  realistic  control  systems  are  nonlinear  to 
some extent. The  typical  approach  to  the  design  of 
control  systems  for  these  nonlinear  systems  begins 
with  a  local  linearization in a  neighborhood  of  a nom- 
inal  operating  point.  A  linear  model,  valid in that 
neighborhood, is obtained  and  then  a  convenient  linear 
feedback  design  method is applied. In general, how- 
ever,  nonlinear  processes  can  only be adequately  char- 
acterized  by  nonlinear  models. 

In recent years, considerable  progress  has  been 
ma.de in representing  the  behavior  of  nonlinear  systems 
by  Volterra  series [4-81.  In the  case  of  multiple  in- 
put,  multiple  output,  time-invariant  systems  such  a 
representation  has  the  form 

Y(t) = It Pl(Tl)u(t-Tl)dTl 

(1) 

where  pj, j - l,Z,... is called  the jth Volterra  ker- 
nel.  Using  operator  notation  equation (1) can  also be 
written  as 

m 

y(t) = P[uI(~) 1 ~jIuI(t),  (2) 
j=l 

in which  the  homogeneous  operator Pj is defined by 

0 ... 0 u(t-Tj)dTj ... dT1. ( 3 )  
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The  goal of  this  paper is to use the  Volterra 
series in the  design of nonlinear  control  systems. 
The  approach  adopted in this  work is based  upon  the 
concept  of  the  Total  Synthesis  Problem,  which  addres- 
ses the  ability  to  design  simultaneously  for  a  speci- 
fic  output  response  and  reasonable  control  signal. 
Mathematically,  the  Total  Synthesis  Problem  can be  di- 
vided  into  two  sub-problems.  The  first is that  of 
Nominal  Design  which  depends on plant  characteristics 
only.  The  second  sub-problem is that  of Feedback  Syn- 
thesis  which  depends  on  the  controller  structure. 

The  Total  Synthesis  Problem  approach  to  design of 
nonlinear  feedback  systems was introduced  for  a  single 
point  of operation by Peczkowski,  Sain,  and Leake in 
1979 [ l ] ,  and  extended  later  to  general  operating  re- 
gions  by  Peczkowski  and  Sain  [2,9,10,11,12].  This 
paper  contributes an extension  to  the  1979  TSP work, 
which  was  phrased in terms  of  transfer  functions.  The 
TSP  definition  itself is extended  by  means  of  Volterra 
representation  for  input-output  behavior of a  nonlin- 
ear  system.  Using  operators  based  upon  Volterra  con- 
volutions,  TSP is extended  initially in the  time  do- 
main;  using  transforms of Volterra kernels, TSP is 
then  extended  also in the  transfer  function  domain. 

Problem  Definition 

Let R, U ,  and Y denote  the  spaces  of  requests  to 
the  system,  controls to the  plant,  and  responses  from 
the  plant,  respectively.  With  these  spaces  defined, 
let 

P :  U + Y ,  ( 4 )  

denote  a  nonlinear  plant.  In  similar fashion, define 
the  desired  plant  response  to  request  by  the  operator 

T :  R + Y ;  (5) 

and  fin’ally,  define  the  controls  needed  to  generate 
such  response by  the operator 

M : R + U .  (6) 

The  operators P,  T, and M are  assumed  to  have  local 
Volterra  representations.  For  the  illustration  of 
these  operators  see  Figure 1. This  leads  to  the  first 
of  two  sub-problems  to  be  studied. 

T -1 
+---+I w p - 1  + Controller 

Figure 1. 
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Figure 2. 

Consider  next  the  question of synthesizing  the 
pair  (M, T) in a  specific  feedback  structure. But  be- 
fore  that,  let  us  define  the  operator 

E :  R + Z ,  (8) 

which  represents  the  mapping  of  the  requests  to  the 
errors.  Let  us  also  define  the  operator 

G : Z + U ,  (9) 

which  describes  the  mapping  of  errors  to  the  plant 
controls  action.  Now we are in a  position  to  state 
the  second  sub-problem. 

The Feedback  Synthesis  Problem (FSP) is to  find  a 
controller G which  synthesizes  the  pair  (M, T) accord- 
ing  to  the  structure of Figure 3. - T -->I - M ,->I 

t- E +I 

Figure 3.  

TSP  with  Volterra  Operators 

In this  section,  TSP  will be  studied  using 
Volterra  operators. As we  mentioned in the  preceding 
section,  TSP  can  be  divided  into  two  sub-problems,  the 
NDP  and  the  FSP.  We  will  start  our  study  by  consider- 
ing  the  NDP  first.  By  NDP  we  mean  a  pair  (M, T) will 
be  found  for  a  given P, where  the  oeprators, P,  M, and 
T  admit  Volterra  representation.  (M,  T)  can  be  found 
by the  selection of  the homogeneous  operators  that  are 
associated  with  the  operators  M  and T from  the  knowl- 
edge of  the homogeneous  operators  associated  with  the 
operator P. 

Recall  that  the  plant in the  input-output  sense 
can  be  written as, see  Figure 1, 

OD 

y = P[ul = 1 Pi[UI. (10) 
i=l 

Clearly, it is also  possible  to  write 
m 

Y = T[rl = 1 Tj [rl, (11) 
j-1 

and 

m 

u = M[r] = 1 Mk[r].  (12) 
k= 1 

Note  that  the  time  argument in (10-12)  has  been  drop- 
ped for  reasons  of  simplicity,  and we will  continue  to 
do so in the  rest  of  this  section. In order  to  devel- 
op  a  relation  between  the  operators Tj, Mk, and Pi, 
let  us  substitute  for u, obtained  from (12), in (10) 
and equate  the  result to (11). That  will  give 

m m 0 

But  the  Volterra  operators  are  multilinear  operators 
[13-151. Hence, if the  request  signal  r is replaced 
by  cr in (13), where  c is an  arbitrary  constant,  then 

m 

In order  to  make  use  of  relation (14), it is necessary 
to simplify  the  expression in the  right  hand  side. A 
simple  computation  gives 

Pi(MjlX ...X Mji)[rl, 

where  we  defined uj = Mj[r]  and 

The  preceding  equations  (19-22)  are  convolutional  type 
equations, so it is extremely  difficult  to  design  T 
and M without  going  to  the  transform  domain.  But  be- 
fore we go to the  transform  domain, we will  solve  the 
FSP in the  time  domain. 

Consider  next  the  second  sub-problem  of  the TSP, 
that is, the  Feedback  Synthesis  Problem. In this 
problem, FSP, a  controller G will be found  which  real- 
izes  the  pair (M, T)  according  to  the  structure  of 
Figure 3. Again,  that  can  be  done by finding  the  com- 
ponents  of  the  operator G from  the  knowledge of  the 
components  of  the  operators  M  and T. To begin  this 
process,  let  us  find  a  relation  between  the  Volterra 
operators G, M, and E. Clearly  from  Figure 3, this 
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relation is given  by 

M = GE.  (23) 

But  equation  (23) is strikingly  similar  to  the  Nominal 
Design  equation (7). Hence we can  write, by inspec- 
tion, the  relations  between  the  components  of  the  op- 
erators M,  G, and  E. The  first  three of these  rela- 
tions  are 

M1 = GlEl, (24) 

M2 = G1E2 + G~(E~xE~), (25) 

M3 = G1E3 + G ~ ( E ~ x E ~ )  + Gz(E2xE1) + G ~ ( E ~ x E ~ x E ~ ) ,  
and, in general we have 

(26) 

Next,  let  us  find a relation  between  the  operators E 
and  T.  Again from  Figure 3 we  have 

e = r - y .  (28) 

Now we can  write 
m 

e = E[r] = 1 Ei[r],  (29) 
i=1 

and 
m 

y = T[rl = 1 Ti[rl.  (30) 
i=1 

So equation  (28) can be written  as 
m m 

1 Ei[rl = I[rl - 1 Ti[rl  (31) 
i=1  i=1 

where I is the  identity  operator.  Again,  replacing r 
by  cr in (31)  and  equating  like  powers  of c gives 

E1 = I - TI, (32) 

and in general,  for i > 1, 

Clearly,  from  equations (24-27)  and from (32-35) we 
can find a direct  relation  between  the  components of 
the  operators T, M, and G. 

Nonlinear Total Synthesis:  &Transform Domain 

In the  preceding  section,  the  TSP  was  formulated 
using  Volterra  operators. In order  to  make use of 

where  the  design  method  will  be  greatly  simplified. 
this  formulation we will  work in the  transform domain, 

In this  section  the  TSP  will  therefore be  studied in 
the  transform  domain.  To  do  this,  let  us  define  the 
multidimensional  Laplace  transform of  the  ith  order 
Volterra  kernel  as  [16,171 

pi(Sl,.**,Si) * . e *  1; Pi(Tl,...Ji) 
m 

expI-(sl71+...+siri)}d7l ... d7i.  (36) 
Recall  that  the  first  step in the  TSP is the  proc- 

ess of selecting a pair  (M,  T)  for a given P, such 
that  the  diagram  of  Figure 2 commutes.  The  pair  (M,  T) 

can  be  found  by  determining  the kernels that are  asso- 
ciated  with  the  operators M and T from  knowledge of 
the kernels  associated  with  the  operator P. In the 
preceding  section we have  found  relations  between Ti, 
Mi, and Pi, the  homogeneous  operators  asociated with 
T, M, and P. These  relations, (19-22), are  convolu- 
tional  type  equations. By applying  definition (36), 
and  after some  algebraic  manipulation,  these  equa- 
tions, (19-221,  are  converted into the  following  mul- 
tiplicative  equations 

Tl(s) = Pl(s)Ml(s),  (37) 

T2(si,s2) = Pl(si+s2)M2(si,s2) 

+ P2(si,s2)(Mi(si) @ Mi(s2)),  (38) 

T3(si  ,s2,s3) = Pl(sl+s2+~3)M3(~1  ,s2,s3) 

+ P2(si,s2+s3)(Mi(si) @ M2(s2,s3)) 

+ P2(si+s2,~3)(M2(si,s2) @ Mi(s3)) 

+ P3(si,s2,~3)(Mi(si) 0 Mi(s2) 

@ Ml(s3)),  (39) 
and in general 

TI(sl,...,si) = Pl(sl+ ...+ si)MI(sl,.. .,si) + 

i i-j+l  i-j+2-k1  i-kl-. . .-kj-2-1 c { c  c *.. c 
j=2 kl=l  k2=l kj-1=1 

pj(Sl+***  ssk +l+..*+skl+k2s***,Sk +...+ k +Ski 1 1 j-l+l 

+...Si) 

(Mk (sl,***,sk @ Mk (Sk  +1,-..,Sk  +k ) @ @ 
1  1 2 1   1 2  

Mi-kl- ...- k j-1 (Sk 1 +k 2 +...+kj-l+l~.*.ssi))} (40) 

Recall  that  our  goal is to  design  the kernels of T and 
M from the knowledge of  P. This  task  becomes  very 
simple  now  and can be performed  recursively  starting 
with  equation (37). But  equation  (37) is the  design- 
ing  equation of  the  linear NDP,  which is studied  by 
Peczkowski, et. &., [l]. So clearly we can  select 
the  pair (Tl(s),  Ml(s)) for a given Pl(s). Having  se- 
lected  T1(s)  and  M1(s) we can proceed  to  (38) where 
now the  only  unknowns  are  Tg(sl,s2)  and  M2(sl,s2).  To 
clarify  this  point  let  us  rewrite (38 )  as 

T2(sl,s2) - Pl(sl+s2)M2(sl,s2) = A2(sl,s2),  (41) 

where  A2(sl,s2) is a known quantity  given by 

A2(sl,sg) = P2(sl,s2)(Ml(s) @ Ml(s2)). (42) 

So again,  from (42) we can  select  the  pair (T2(sl,s2), 
M2(sl,s2))  and we can proceed  to  the  next  step. I n  
general we will  have 

Ti(sl,.. . ,si) - Pl(sl+.. .+ si)Mi(sl, ... ,si) = 

Ai(sl,*.*,si),  (43) 

where Ai(s1,...,si) is a known quantity  which  depends 
on terms  involving  ML  and  PL+1  for L < (i-1). Hence 
from (43) we can  select  the  general  pgir 
(Ti(sl,  ...,si),Mi(sl,...,si)). 

To complete  the  design,  we  will  look  into  the 
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second  sub-problem  of  the  TSP  which is the  Feedback 
Synthesis  Problem in the  transform  domain.  Recall 
that  FSP  deals  with  the  problem  of  finding  a  control- 
ler  G  which  synthesizes  the  pair  (T, M) according  to 
the  structure of Figure 3. Here, the  goal is to  find 
the  kernels of G in the  transform  domain.  This  can  be 
done by taking  the  transform  of  the  convolutional  re- 
lations (24-27)  and  (32-35). To  begin  this  process 
let us look  into  equations (24-27), since  those  equa- 
tions  have  the  same form as  the  NDP  equations (19-22). 
In the  transform  domain,  equations (24-27)  become 

Ml(s) = Gl(s)El(s)  (44) 

M~(sl,s2) = Gl(sl+s2)El(sl,s2) 

+ Q(S~,S~)(E~(S) @ El(s2))  (45) 

M3(sl,s2,s3) = Gl(sl+s2+~3)E3(sl,s2,~3) 

+ G2(sl,s2+~3)(El(sl) @ E2(s2,s3)) 

i > 1. (49) 

Clearly,  from  equations (44-47)  and from (48-49), we 
find  a  direct  relation  between  the  kernels of  the 
Volterra  operators T,  M, and G. 

Feedback  Linearization 

An interesting  special  case of  the  feedback  de- 
sign we  proposed in the  preceding  section is the  fol- 
lowing.  Suppose we want  to  design  a  feedback  system 
for a  given  nonlinear  system  such  that 

for i > 1. This  means  we  want  to  use  the  feedback  de- 
sign to  linearize  the  system.  Of  course, this,is an 
approximation  linearization. In recent  years  feedback 
linearization,  exact  linearization,  represents  one of 
the  most  active  areas  of  research in control  systems 
[18-201. Most of  the  work in this  area  follows  the 
differential  geometric  approach. 

Here, our goal is to design  a  controller G, that 
is to  find  the  kernels  of G, which  achieve  feedback 
linearization.  This  means we want  the  higher  order 
kernels of T t o  be zero, kernels  beyond  the  first 

+ c r c  c ... c i i-j+l  i-j+2-k1  i-kl-. . .-kj-2-1 
j=2 kl=l  k2=l  kj-l=l 

Example 

To  illustrate  the  foregoing  ideas,  consider  the 
problem  of  designing  a  nonlinear  feedback  control  sys- 
tem  for  a  simplified  model of a DC to  AC  converter  as 
shown in Figure 4. 

Figure 4. 

We will  specifically  study  the  influence of  the 
inputs v '  and V on  the  outputs w and V', in the  neigh- 
borhood  of  an  operating  point,  while  holding v as  a 
constant.  The  differential  equation  model for the DC 
to  AC  converter is given by  [22] 
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where 
J = moment  of  inertia 

k = emf  constant 

k' = torque  constant 

r = field  resistance of  the  motor 

r' = field  resistance of the  generator 

1' = field  inductance of  the  generator . 
To simplify  our  equations  let  us  assume  that  k = k' = 

equations (56)  and  (57)  become 
1, r = r' = 1, R = .2, Ri = 1, 1' = . 5 ,  and v = 1. So 

dV' V' dw 
dt w dt 
-- = --  -- - 2V' + 2w'. 

Suppose  we  make  the  following  shift of  coordinate - 

Equations (60) and  (61)  become 

. X2+V' . 
x2 = ----- x1 + 2x17 + 2 Z '  - 2x2 - 2V' - 

- 
Xl+W 

+ 2zu2 + 2X1U2 . (62.b) 

The  system  described by  equations (62.a) and (62.b) is 
called  a  linear  analytic  system  with  the  output  given 
by 

Y1 = x1  (62.c) 

Y2 = x2 (62.d) 

Suppose  now we want  to  design  a  nonlinear  feed- 
back  control  system  for  the DC to  AC  converter  such 

that 11 
1 

(a  ls+l)  (a  2s+l) 

0 

0 

Ti(") = 1 , (63) 
(a 3s+l)  (a4s+l) 

and 
T2(Sl,S2) = [ O I .  (64) 

The first  step in the  design  method is to  calcu- 
late  the  kernels  of  the  plant in the  transform  domain. 
This can  be  done  for  this  particular  system,  (621, by 
using  the  works in [4,15,21].  Having done  that,  we 
can now find  the  first  and  the  second  order  control- 
lers  by  using  equations  (51)  and (52). Due  to  the 
space  limitation we have  not shown the  calculation of 
the  plant  kernels  and  the  controllers.  The  interested 
reader  can  find  those  calculations in (211, or  they 
are  available  from  the  authors on request. 

In order  to  check  our  design  a  computer  simula- 
tion  for  the  closed  loop  system  has  been done. Fig- 
ure 5 shows  responses for request  changes  of .1 in the 
voltage  and .1 in the  speed for the  operating  condi- 
tion  of  1.3,  and  .3,  voltage  and  speed respectively; 
and  the  desired  time  constants  were a1 = a3 = -001, 
and a2 = a4 = .005. In this figure, 5 ,  a  comparison 
between  our  design  and  a  linear  design,  obtained  by 
linearizing  the  plant  first  and  then  using  linear TSP, 
to  the  desired  response  shows  that  our  design  has  a 
little  improvement  over  the  linear  design. However, 
by increasing  our  request  change in the  voltage  to .2 
and  the  speed  to  .2,  for  the  same  operating  condition 
in the  last  step we find  a  much  better  performance 
from  our  design  than  the  linear  design,  see  Figure 6. 
The  improvement is not so much in the speed, Figure 
6.a,  but in the  voltage,  where  the  linear  design  shows 
an effect  similar  to  that of a  right-half  plane  zero. 

Conclusion 

This  paper  has  presented  a  procedure for design- 
ing  nonlinear  feedback  controls for nonlinear  systems. 
By developing  this  procedure  we  have  achieved  our main 
goal which, as we pointed out, is to  utilize  the 
Volterra  series in the  design  problem.  The  design 
technique  was  formulated in terms of kernels of  the 
Volterra  series in the  transform domain. The  kernels 
play  the  same  role  as  the  transfer  function in the  de- 
sign  of  linear  systems.  A  pleasant  feature  of  our  de- 
signing  method is that  it is relatively  easy  to  under- 
stand;  moreover, It is a  systematic  approach. Hence, 
it  can  be  programmed  easily. We have  demonstrated  the 
method in the  example of  the  preceding  section.  This 
example  has  illustrated  the  potential  advantage  of  de- 
signing  higher  order  controllers for nonlinear  sys- 
tems. This work may  be  regarded  as an extension of 
the  paper by Peczkowski, Sain, and Leake [l] in 1979. 
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