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ABSTRACT

A model reduction scheme of k-power bilinear systems is
proposed in this work. The canonical state space structure
of k-power systems is used to simplify a balancing like
model reduction scheme for bilinear systems. The derived
model reduction algorithm reduces to computational steps
similar in complexity to the balanced approximation of
linear systems. Controllability and observability gramians
turn out to have simple block diagonal structures and their
properties are easily derived. The simulation of an 11th
order system shows good performances of the reduced
order models.

L INTRODUCTION:

No complete theory of analysis and design of general
nonlinear systems is possible due to the lack of definite
structural properties. However, a special class of nonlinear
systems, bilinear systems, are relatively well studied [1,2].

A subclass of bilinear systems, have the property that
the input-output map is homogeneous in the input u(t) of
degree k; i.e., the output y(2) has the property

y(ou(n) = oLy (u() m
for all scalar a and admissible inputs, u(t). A bilinear
system satisfying (1) is called a homogeneous of degree k
or a k-power bilinear system and we say that the input-
output map is a k-power realizable as the zero state
response of an internally bilinear system. Homogeneous
systems arise in various areas of engineering. Systems
consisting of multiplicative connections of linear subsys-
tems are naturally represented by homogeneous bilinear
models [1,3]. Also, successful modeling of hydraulic
drives for machine tools and robots by homogeneous
bilinear systems is reported in [4]. Homogeneous systems
alsq arise naturally in representing polynomial systems. A
polypomial system of degree N is described by a finite
sum of homogeneous terms [1]. Homogeneous systems
alst arise maturally in nonlinear system identification
where each homogeneous term is identified separately
thus leading to a separate response for each term [5].

Homogeneous bilinear systems often lead to simple
design structures extending results and concepts of linear
systems. For example, in {6], nonlinear IIR Adaptive Filter
using a eneous bilinear structure resulted in a
cascade connoction of linear filters and multipliers. Also,
in [7), necessary and sufficient conditions for bounded
input-bounded output stability are obtained generalizing
linear systems stability criterion.

Motivated by the rich structural properties of homoge-
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neous systems as compared to non-homogeneous systems
and the closeness in structure of homogeneous bilinear
systems to linear systems, the authors investigate in this
paper the reduced order approximation of homogeneous
bilinear systems.

Model Order reduction of bilinear systems via the
balancing approach has been successfully applied, by the
authors, to multi-areas electric power plants [8). However,
the balanced reduction algorithm required the computation
of solutions of generalized Lyapunov equations which
may be heavy and costly for large dynamic systems. Also,
existence and uniqueness of solutions are not transparent.

The purpose of the present paper is two fold. First, it is
shown that the balanced model reduction algorithm of
homogeneous bilinear systems reduces, unlike the case of
general bilinear systems [8], to solving standard linear
Lyapunov matrix equations of lower dimensions. Efficient
computational algorithms are available [9] to solve these
equations. Second, as a consequence of the above it is also
shown that, unlike the general bilinear case, existence and
uniqueness conditions of solutions of the derived Lyapu-
nov equations for homogeneous bilinear systems, follow
trivially from the existing linear theory. These results
show again the relative closeness of the structure of
homogeneous bilinear systems to that of linear systems.
Note that the reduced order model obtained will also be a
k-power.

p(it is to be noted that, to the authors knowledge, the
present work represents the first direct development of a
model reduction scheme of homogeneous bilinear sys-
tems.

The paper is organized as follows: Section II includes
mathematical preliminaries. In section III, we review
k-power systems. In section IV, the reduced order algo-
rithm of k-power systems is presented. A simulation
example is given in section V to illustrate the results.

II. MATHEMATICAL PRELIMINARIES

Bilinear systems are those systems which are linear
separately with respect to the state and the control, but not
jointly. They can be characterized by the following state
variable equations:

£0)=Ax(O)+ £ Nx(Ou(e)+ Bu(o) 2a)

Y =Cx(®), .b)

where x(1) is an n x 1 state vector, u() is an m x 1 input
vector, ; is the ith component of u(z), y(t) is an p x 1




output vector and A,N,,N,,...,N,, B, and C are real

matrices of appropriate size.
It is well known that the input/output representation of
system (2) is given by:

t - - T % m
y(t):J‘ e PBu(r)dr, + 3 f f ‘J‘ o z
o P ARA o Ivineair=1
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where b; is the ith column of B .

Controllability and observability concepts of bilinear
systems have been studied by several researchers [10,11].
The controllability and observability mappings P and Q
are defined as follows:

Let
P,(t)=¢"B,
v i=23,.

@

Pltyat) =[NP, NP, ...

then

P=[P, P, P, ..] (5)
Similarly, let

Ql(t ) =Ce A‘y

Y | P P S P
©)

T im23,....

then
o=10/ 0 05 .. @]
Using (4) and (5) the controllability gramian is defined as

T

P=% [.. fP,.P,.'dtl...dz,., @®)

Similarly the observability gramian is defined as
0=% f fQ,.'Q,.dtl. s ©)

Theorem 1. For a bilinear system of the form (2), the
gramians P and Q satisfy the following generalized
algebraic Lyapunov equations:

AP +PAT+ ii:,lN,PMT+BBT =0, (10)
and
ATQ+0A +§1N,.TQM+C’C=O. an
Proof: See the Appendix.

The single input single output version of equations (10)
and (11) were first reported in [12] without proof. Clearly
if N;=0, for i = 1,2, ...,m then equations (10) and (11)
reduce to the normal Lyapunov equations of linear sys-
tems, as expected.

Solution for equation (10) can be obtained by rewriting
it in a Kronecker product linear matrix equation form as:

Gp=c (12)
where .
G=(A®I+I®A+N,®N,+...+N,®N,) (3)

and

23

P =Vec(P)=(Py1; Pats -1 Paps Prps Pras -+ Pras ++s Prms --wPu)r'

¢ =vec(-BBT).
Similar treatment is done for equation (11).

II. k-POWER SYSTEMS

Let the bilinear system (2) be a k-power and minimal
in the sense of D’Alessandro et al [10], then it can be
transformed into a system with a special structure as in the
following Theorem [13).

Theorem 2 . Let (2) be a minimal bilinear realization of a
k- m\évef:r. Then there exists a minimal bilinear realization
ol orm

3,(r) A z7,(¢e)
,(t) A, 2(t)
1) A
0 z,(¢) B,
N, O () 0
+ ‘E‘.lu‘(t) + u(t)
Ny O 7..(1) 0
(14.a)
[2,(¢)]
z(t)
y¢) = [0 O 0 C) (14.b)
[ 200)]

For the k-power system representation given by equa-
tion (14), the generalized Lyapunov equations (10) and
(11) simplify to the following:

Theorem 3. Let the matrices A,N,,N,,...,N,,, B, and C of

k-power system be in the form (14.a) and (14.b) then the
controllability and obsérvability gramians of the k-power

system are given by
P = diag[P,,P,y,....P,] (15)
Q = diag [Qu! Qnt At QH] (16)

where P; and Q; are solutions of the following Lyapunov
equations:

AP, +P,AT+B BT =0, an
~n
Aipii"'PiAir“'..;lNu-l)-‘Pﬁ-l)(i-n)Ng-m =0, Jj=2,3,..,k
(18)
ATQu+QuA, +CIC, =0, (19)

AfQJI+QJAI+‘§|NJ1S.Qq~I)q¢1W;4=°y j=k-1,k-2,...,2,1

(20)



Proof. In what follows the proof of equation (15) will be
given. The proof of (16) is analogous to (15).

Using (14.a) substitute for A,N,,N,,...,N,,, and B in (10) .
That will give the diagonal elements of P as in equations
(17) and (18). The off diagonal elements of P are given by
the following two sets:

AP;+PAT=0 J=23,...k (21

»
APy +PAl +_,§1Nu-1yP d-00-1VG-15 =0,

Jj=23,..,k-1 I=j+1,j+2,..,k
(22)
Moreover, P;; =0, for j= 2, 3, ..., £, is the unique solution
of (21) if and only if the matrices A, and -A; have no
cigenvalues in common [14]. The same argument is
repeatedly used for equation (22) leading to all off
diagonal elements equal to zero.
Remark 1: From the above theorem, the computation of
the generalized Lyapunov equations for k-power systems
reduces to solving the standard Lyapunov equations (17)
and (19), then replacing these solutions into equations (18)
and (20) respectively. These equations are again standard
Lyapunov equations arising in linear systems.
Remark 2: It is shown in [7] that for a k-power BIBO
system, every A; j=1, 2, ..., k, is asymptotically stable.
Therefore [14] every P; 20,and Q;>0forj=1,2, ..k

and in turn P 20, and Q 2 0. Furthermore it can be shown
from (17-20) that the obtained reduced model is asymp-
totically stable under simple linear controllability and
observability conditions.

IV. k-POWER MODEL REDUCTION ALGORITHM

In this section, an algorithm for reducing k-power
systems is developed. The algorithm is based on the
concept of a balanced realization. Model reduction based
on balanced realization has been extensively studied for
linear systems [15-18). In a balanced representation the
controllability and observability gramians, which repre-
sent the input-state and state-output maps, respectively, of
the system, are equal and diagonal. The diagonal entries
of these gramians, called the singular values, measure the
degree of controllability and observability of the states in
this representation.

The most controllable and most observable states,
corresponding to the largest ordered singular values, are
retained in the reduced model. The order is suggested by
the magnitudes of the singular values.

Once the controllability gramian P and the observabil-
ity gramian Q have been determined, the balanced realiza-
tion of system (14) can be obtained by applying the
state-space balancing transformation

x, () =T"x(s), (23)

to equation (14). The state-space representation of the new
system is:

1,0 =A%, (1) + ii::l Ny, (u8) + Byuce),

() =Cyx, (1), (24)
‘Where

24

A,=T'AT, N,=T'NT, B,=T'B, and C,=CT.
The controllability and observability gramians of the new
system are given by:

P,=TPTT 25)

Q,=T'Qr (26)
Moreover, these gramians are equal and diagonal. Nor-
mally the gramians of the balanced system has addition-
ally the following special arrangement:

P,=Q,=X=diag[o,,0,...,0,]
6,20,2...206,>0 @7

The o;, called the Hankel singular values of the system,
are determined by

o, = (A (PQ) (28)
where A,(PQ) denotes the ith eigenvalue of PQ.

However, in order for the balanced system to have the
same structure as the k-power system (14), the Hankel
singular values of the balanced system are arranged in
descending order for the subsystems as follows:

P,=Q,=L=diag[Z,Z,....L}] 29)
where
%;=diaglc;,,04,..,06,] j=12,...k (30)

0;20,2...20;,>0

v is the dimension of jth subsystem.

An efficient algorithm for the computation of a bal-
anced representation for linear systems developed by Laub
et. al. [9] will be modified in this paper to compute a
})alllanced k-power system. The algorithm is summarized as

ollows:

i. Use Egs. (17 -20) to find the controllability and
observability gramians of the subsystems.

ii. Compute Cholesky factors of P;and Q; :
Let L,; and L,; denote the lower triangular Cholesky
factorsof P;and @, i.e.,

P;=LLY, Q.=L[L>. (31)

iii. Compute the singular value decomposition of the
product of the Cholesky factors:

LiL,=UZV!. (32)
iv. Form the balancing transformation for the subsystems
T,=L,VE". (33)
v. Form the balancing transformation

T =diaglT,,T,,...,T}] (34)

vi. Form the balanced state-space matrices _
A, =TAT, N, =T NT, i=1,2,...m (35)
B,=T"'B C,=CT. (36)

It is a simple matter to show that the balanced system
(24) has the same structure as the system given in (14)
with

A =T/ AT, B, =TB,, Cu=C,T,, i=12..k
Ny =T;,\N,T; j=12,..,k=1 i=1,2..,m
370



To obtain a reduced order model, let the matrices given

in equation (37) be partitioned as
A= Avii An No.= [ijill N wz}
" Ay Ay o Nyar Ny
T
By, = [B:u B:;z Cu=[Cuy Cusl

Also, let Z; be partitioned in a similar way:

Z, 0
i
5ol 5]

where £, = diaglg;, ..., ;] and Z; = diaglo;, .1y, ..., O3}
If o, /0, ,y»1forj=1,2, .., k,then the reduced order
model of the full order model is given by

£, =425, 0+ 5 Nt w0+ Bu()

Y(O) = Coxy (1)

where
A, =diaglAy . Ay -0 Ayl
0 B,

N blill 0 0

N, i B =
N bk - 1)ill 0 0
Cp = 0o 0 Cuul
V.EXAMPLE

In this section, the preceding algorithm will be applied
to an eleventh order 2-power system with two inputs and
two outputs. This example is to solely illustrate the results
and interpretion of the derived model reduction algorithm.
The matrices A, N,, N,, B, and C of the model are as

follows:
Ao A 0 N 0 0
Lo 4, v N, O
0 0 B,
vl e o
where

A, =diag[-0.462,-0.951,~0.633,-0.439,-0.825,-0.689],

A, = diag[-0.7022,-0.987,-0.954,-0.851,-0.289],
[0.177 0.234 0.795 0.056 0.117 0.330
0.828 0.102 0.696 0.598 0.763 0.703
0.158 0.219 0.753 0.227 0.526 0.143
0988 0.635 0.670 0319 0.554 0.162
|0.257 0.696 0.633 0.700 0.588 0.485
r0.860 0.135 0431 0476 0.2539 0.721
0.813 0.529 0.259 0.388 0.672 0.945
=|0.557 0.311 0370 0279 0.676 0.461],
0.739 0.588 0.393 0.0783 0.514 0.940
10316 0518 0447 0370 0729 0.322

N, =

25

0.214
0.081
0.389
0.952
0.948
0390 0.422

C _[0.282 0.011 0.983 0.820 0.398]
=

0.269
0.692
0.284
0777
0.784

B,=

0.194 0.192 0244 0.136 0.601
The singular values of the 11th order 2-power system
gr=ed;'ag[5.4152.0.1528,0.0253,0.0143.0.0029.0.0006,38521.0.67".0.0176,0.0063,0.0016]
The fourth order reduced model corresponding to states
X1, X5 X, X is computed, and its state space matrices are
found as:

-0.637 -0.191 0.000  0.000
A= -0.170 -0.659 0.000  0.000
71 0,000 0.000 -0.538 0.243
0.000 0.000 0350 -0.630
0.000 0.000 0.000 0.000
No= 0.000 0.000 0.000 0.000
b 0769  0.650 0.000 0.000
-0.189 -0.086 0.000 0.000
0.000 0.000 0.000 0.000
N | 0000 0000 0000 0000
= 0755 0164 0.000 0.000
-0.349 -0.128 0.000 0.000
1.819 1.895
B = 0.058 0.445 c =[0.00() 0.000 2.024 —0.916]
71 0.000 0.000 *710.,000 0.000 1.481 0.130
0.000 0.000

Similarly a second order reduced model corresponding to
states x;, x, is chosen. The matrices of the second reduced
order mode!l are found to be
l:—0.637 0.000 :l
Abr = ’

0.000 0.000
0.000 -0.538

Mo =[0.769 0.000 "

B - 1.819 1.895
#710.000 0.000]

N _[0.000 0.000
%2=| 0756 0.000]’

C = 0.000 2.024
¥#710.000 1.481

Responses y, and y, are shown in figures 1 and 2 for input
u, and in figures 3 and 4 for input u,, for the original 11th
order 2-power system, the fourth order reduced model and
the 2nd order reduced model. The fourth order model
responses are essentially superimposed on the original
responses and therefore represent a good approximation to
the original system in both transient and steady state
behavior. For the 2nd order reduction, the transient
responses are good approximations of the original
responses. There is, however, an offset in steady state
particularly for the second output y,. This offset is also
present in the balanced model reduction of linear systems,
as it is well known that the model reduction scheme based
on balancing leads generally to good transient perform-
ance and may give poor low frequency approximation.
One can introduce frequency weighting to improve the
low frequency approximation [19].
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APPENDIX
PROOF OF THEOREM 1

In what follows the proof of equation (10) will be given.
The proof of (11) is analogues to (10).
Let

— T
P)= fe"‘BB ey,

Po=| Ee*Np et =23,
i=
To show that the P in (8) is a solution of (10). Consider

AP +PAT= A[‘):'_] f J'P,P;dx,...a,] +[‘§l J' jp,P,'d:,...dx,]A'
= A[Je”‘BBre‘f"&l +E f/% NP, ,N,'e""d:,]
+U¢"'BB T + £ fl;\:l “NF, ,Nfe""d:,]A'
=A J' c;“BB'c‘r"dt,+J'4A“BB'¢""4£,A’+A[§.’ J' ,?. ."'N,F,-,N,'.""dx,]
+[§1 Lg ¢"N,F,_,l\(,’¢‘r"dl,]4'

- f :_'1 (‘A“B B T‘Aflld'l“) +a§u:\-:u" %.(‘”‘NJF 1oN] t"")d'n

Now by integrating between 0 and « and by assuming that
A is stable then we have

AP+PA"=-BB"- % I NP, N/

k=2j=1

=-BB"-§ N,.( 3 F,_I)N}

j=1 k=2

_ T_ . T
=-BB"- 3 NN

i=1
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