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ABSTRACT 
A model reduction scheme of k-power bilinear systems is 
proposed in this work. The canonical state space structure 
of A-power systems is used to simplify a balancing like 
model reductton scheme for bilinear systems. The derived 
model reduction algorithm reduces to computational steps 
similar in complexity to the balanced approximation of 
linear systems. Controllability and observability gramians 
turn out to have simple block diagonal structures and their 
properties are easily derived. The simulation of an 11th 

order models. 
order system shows good performances of the reduced 

I. INTRODUCTION: 
No complete theory of analysis and design of general 

nonlinear systems is possible due to the lack of definite 
structural properties. However, a special class of nonlinear 
systems, bilinear s stems, axe relatively well studied [l,2]. 

A subchs of Linear systems, have the property that 
the inputatput map is homogeneous in the input u(r) of 
degree k; i.e., the output y(t) has the property 

(1) 
for all scalar a and admissible inputs, u(r). A bilinear 
system satisfying (1) is called a homogeneous of degree k 
or a k-power bilinear system and we say that the input- 
output map is a k-power realizable as the zero state 
response of an intanally bilinear system. Homo eneous 
systems arise in various aeas of engineering. jystems 
consisting of multiplicative connections of linear subsys- 
tems are naturally represented by homogeneous bilinear 
models 11.31. Also, S U G ~ ~ S S ~ U ~  modeling of hydraulic 
drives for machine tools and robots by homogeneous 
biUnear systems is reported in 141. Homogeneous systems 
also arise naturally in representing polynomial systems. A 
porrpomial system of degree N is described by a finite 
sun) of homogeneous terms 111. Homogeneous systems 
alsu a r b  naturally in nonlinear system identification 
whae each homogeneous term is identified separately 
thus Eeading to a sew response for each term [51. 

Homogeneous b&near systems often lead to simple 
design structutes extendin results and concepts of linear 
syaems. Por example, in 181, nonlinear IIR Adaptive Filter 
u4ng a homogeneous bilinear structure resulted in a 
macado caiwctrm of linear filters and multi liers. Also, 
in [A, "ry and sufficient conditions k r  bounded 
*bounded o u p  e i l i t y  ate obtained generalizing 
1" systems stabihty cnterion. 

Motivated by the rich structural properties of homoge 

Y ( W r ) )  = $Y (W) 
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nmus systems as compared to non-homogeneous systems 
and the closeness in structure of homogeneous bilinear 
systems to linear systems, the authors investigate in this 
pap' the reduced order approximation of homogeneous 
bilinear systems. 

Model Order reduction' of bilinear systems via the 
balancing approach has been successfully applied, by the 
authors, to multi-areas electric power plants [8]. However, 
the balanced reduction algorithm required the computation 
of solutions of generalized Lyapunov equations which 
may be heavy and costly for large dynamic systems. Also, 
existence and uni ueness of solutions are not transparent. 

The purpose 01 the present paper is two fold. F~rst, it is 
shown that the balanced model reduction algorithm of 
homogeneous bilinear systems reduces, unlike the case of 
general bilinear systems [8]. to solving standard linear 
Lyapunov matrix equations of lower dimensions. Efficient 
computational algorithms are available [9] to solve these 
equations. Second, as a consequence of the above it is also 
shown that, unlike the general bilinear case, existence and 
uniqueness conditions of solutions of the derived Lyapu- 
nov equations for homogeneous bilinear systems, follow 
trivially from the existing linear theory. These results 
show again the relative closeness of the structure of 
homogeneous bilinear systems to that of linear systems. 
Note that the reduced order model obtained will also be a 
k-power. 

It is to be no@ that, to the authors knowledge, the 
present work represents the fmt direct development of a 
model reduction scheme of homogeneous bilinear sys- 
tems. 

The paper is organized as follows: Section 11 includes 
mathematical preliminaries. In section 111, we review 
k-power systems. In section IV, the reduced order algo- 
rithm of k-power systems is presented. A simulation 
example is given in section V to illustrate the results. 

II. MATHEMATICAL PRELIMINARIES 
Bilinear systems are those systems which are linear 

separately with respect to the state and the conml, but not 
jointly. They can be characterized by the following state 
variable equations: 

(2.4 
m 

i = 1  
2(t) =Ax(r)  + .E Nix(r)ui(t) +Eu(r) 

where x(t) is an n x 1 state vector, u(r) is an m x 1 input 
vector, ui is the ith component of u(r), y(t) is an p x 1 
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output vector and A,Nl ,N ,  ..., N,,,, B ,  and C ace real 
maaices of appropriate size. 

It is well known that the input/output representation of 
system (2) is given by: 

(3) 
where bi is the ith column of B . 

Controllability and observability concepts of bilinear 
systems have been studied by several researchers [ 10.1 11. 
The controllability and observability mappings P and 
are defined as follows: 
Let 
Pl(t) = e*B, 

P,(tl ,.., t i )= [c  '~g,-, cAr?Vgi-, ... eArWJJ,-J 

then 

Similarly, let 

Ar i=2 ,3  ,... 
(4) 

(5) 
- 
P = [ P 1  Pz P, ...I 

Q1W = Cek, 

actl ,..., ~J=[[QJV,~+~ [e,-p,a+r ... [Qi-~.,+If]l i '53 ,.... 
(6) 

then 
(7) Q =[Qf Q: Q f  ... IT 

Using (4) and ( 5 )  the controllability gramian is defined as 
(8) 

(9) 

- 

P = r = l  J... JPiP;d  l...di, 

Similarly the observability gramian is defined as 
Q = i = l  i J . . . J e : e i d t l . . . d i  

Theorem 1. For a bilinear system of the form (2). the 
gramians P and Q satisfy the following generalized 
algebraic Lyapunov equations: 

AP+PAT+ 5 N~PN;+BBT=O,  (10) 
i = l  

and 

ATQ +QA + 2 N,TQN~+CC =o. 
i = l  

Proof: See the Appendix. 

The single input single output version of equations (10) 
and (1 1) were fmt reported in [12] without proof. Clearly 
if Ni=O, for i = 12, ..., m then equations (10) and (11) 
reduce to the normal Lyapunov equations of linear sys- 
tems, as expected. 

Solution for equation (10) can be obtained by rewriting 
it in a Kronecker product linear matrix equation form as: 

where 

and 

G F  (12) 

G = (A 8 1  +I @ A  + Nl 8 Nl + .. . + N,,, 8 N,,,) (13) 

III. &-POWER SYSTEMS 
Let the bilinear system (2) be a k-power and minimal 

in the sense of D'Alessandro er ul [lo], then it can be 
transformed into a system with a special structure as in the 
following Theorem [13]. 

Theorem 2 .  Let (2) be a minimal bilinetir realization of a 
k- wer. Then there exists a minimal bilinear realization 
o& form 

+ E UAt, 
i- I 

A, 

Nu 0 
t .  

. .  

y ( l )  = [o 0 m s . 0 ck] (14.6) 

For the k-power s stem representation given by equa- 
tion (14). the g e n e K a  Lyapunov equations (10) and 
(1 1) simplify to the following: 

Theorem 3. Let the matrices A, N,,N,  ..., N,,,, B, and C of 
k-power system be in the form (14.a) and (14.b) then the 
controllability and obshability gramians of the k-power 
system are given by 

P = &g [PI,, PD . . ., P,] (15) 

Q = diOs[eii,Qa*.*.,&l (14) 
where Pii and Q ,  are solutions of the following Lyapunov 
equations: 

(17) Alp,, + P,,A: + B,B: = 0, 

AiPii+Pd/ +igl Nti-lMPti-l~ti-l+l~-lM = 0, j = 2,3, ..., A 

0 8) 

A,'& + + c,'c, = 0. (19) 

Arfev + Q&j +,IN&, + + IFji = 4 i = A - 1, - 5. .  5 1 

(20) 
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Proof. In what follows the proof of equation (15) will be 
given. The proof of (16) is analogous to (1 5). 
Using (14.4 substitute for A, N,, N, . . ., N,, and B in (10) . 
That will give the diagonal elements of P as in equations 
(17) and (1 8). The off diagonal elements of P are given by 
the following two sets: 

Alpu +P@; = 0 j = 53, ..., k (21) 

j = 53, ..., R - 1 I =J+l,j+ 2,..., k 

(22) 
Moreover, P ,  = 0 , forj= 2,3. ..., k, is the unique solution 
of (21) if and only if the matrices A, and -Aj have no 
eigenvalues in common [141. The same argument is 
repeatedly used for equation (22) leading to all off 
diagonal elements equal to zero. 
Remark 1: From the above theom, the computation of 
the generalized Lyapunov equations for k-power systems 
reduces to solving the standard Lyapunov equations (17) 
and (19). then re@acing these solutions into equations (18) 
and (20) mpemvely. These equations are again standard 
Lyapunov equations arising in linear systems. 
Remark 2: It is shown in [71 that for a k-power BIB0 
system, every Ai J=I, 2, ..., k, is asymptotically stable. 
Therefore [141 every P, 2 0, and Q, 2 0 fori = I, 2, ..., k 
and in turn P 20, and Q 20. Furthermore it can be shown 
from (17-20) that the obtained reduced model is asymp- 
totically stable under simple linear controllability and 
observability conditions. 

IV. k-POWER MODEL REDUCTION ALGORITHM 
In this section, an algorithm for reducing k-power 

systems is developed. The algorithm is based on the 
concept of a balanced realization. Model reduction based 
on balanced realization has been extensively studied for 
linear systems [15-181. In a balanced representation the 
controllability and observability gramians, which repre- 
sent the input-state and stateoutput maps, respectively, of 
the system, are equal and diagonal. The diagonal entries 
of these gramians, called the singular values, measure the 
degree of controllability and observability of the states in 
this representation. 

The most controllable and most observable states, 
corresponding to the largest ordered singular values, are 
retained in the reduced model. The order is suggested by 
the magnitudes of the singuIar values. 

Once the controllability gramian P and the observabil- 
ity gramian Q have been determined, the balanced realiza- 
tion of system (14) can be obtained by applying the 
state-space balancing transformation 

x,(r) = P x ( t ) ,  (23) 

to equation (14). The state-space representation of the new 
system is: 

A, = T'AT, Ng = T'NiT, B, = T ' B ,  and c b  = m. 
The controllability and observability gramians of the new 
system are given by: 

P,  = rlrT (25) 

Q, = TTQT (26) 
Moreover. these gramians are equal and diagonal. Nor- 
mally the gramians of the balanced system has addition- 
ally the following special arrangement 

P, = Q, = C = diag [ C J ~ , ~ ~ . .  ., on] 

0,20*2 ... 2on>o (27) 

The oi, called the Hankel singular values of the system, 
are determined by 

I 

ai = (h,.(PQ)>' (3) 
where &.(PQ) denotes the ith eigenvalue of PQ. 

However, in order for the balanced system to have the 
same structure as the k-power system (14), the Hankel 
singular values of the balanced system are arranged in 
descending order for the subsystems as follows: 

(29) 
where 

(30) 

P, = Q, = Z = diag &, q, .. .,Z,] 

Zj = diag [o,, oJ2, . . ., ojV3 J = 1,2, . . ., k 
ail 2 bJ2 2 ... 2 Oj" > 0 

v is the dimension of jth subsystem. 
An efficient algorithm for the computation of a bal- 

anced representation for linear systems developed by Laub 
et. al. [9] will be modified in this paper to compute a 
balanced k-power system. The algorithm is summarized as 
follows: 

i. Use Eqs. (17 -20) to find the controllability and 
observability gramians of the subsystems. 

ii. Compute Cholesky factors of Pfi and Qfi : 
Let L,j and L, denote the lower triangular Cholesky 
factors of P, and Qfi, i.e., 

(31) 
iii. Compute the singular value decomposition of the 

P.. = L .LT, Qfi = L .LT. U rJ rJ OJ OJ 

product of the Cholesky factors: 
L ; L ~ ~  = u,c,v,?. (32) 

Ti = LrjVjZj". (33) 
iv. Form the balancing transformation for the subsystems 

v. Form the balancing transformation 
(34) 

vi. Form the balanced state-space matrices 
A, = T'AT, Nbi = T-'NiT, i=l, 2, ... ,m (35) 

It is a simple matter to show that the balanced system 
(24) has the same structure as the system given in (14) 
with 
Au = q l A j q ,  Bbl = T;'B,, C, = C,T,. j = 1.2, ..., k 

NW=q::,N,,Tj j = 1 , 2 ,  ..., k - 1  i = 1 , 2 ,  ..., m 

(37) 

T = diag [T,, Tu . . ., T,] 

B, = T ' B  cb=m. (36) 
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To obtain a reduced order model, let the matrices given 
in equation (37) be partitioned as 

Abjl 2 Nbjill Nb)i12 

[ALill AbIz] Nbji= [ Nhi21 N b j ~ 2  ] 
Bb] = IB;] Bb:2 f  cbk = [Cbkl, cbk121 

Also, let Zj be partitioned in a similar way: 

-0.214 0.269- 
0.081 0.692 
0.389 0.284 
0.952 0.777 
0.948 0.784 
0.390 0.422a 

B,  = 

where Cjl = diag[ojl, . . ., oh] and Z12 = diag[oj(,+l), . . ., ojJ. 
If 
model of the full order model is given by 

B 1 for j = I, 2, ..., k , then the reduced order 

m 

kb(0 =A&&) + i = l  Nkxbui(t) + B,u(r) 

J ( 0  = CbrXbr(0 
where 
A,  = dag [AbIll, A,,, . - A M I 1  

' 

- 0  
NbIill 

B,= 

rBbll  

0 
* 

0 

V. EXAMPLE 
In this section, the preceding algorithm will be applied 

to an eleventh order 2-power system with two inputs and 
two outputs. This example is to solely illustrate the results 
and interpretion of the derived model reduction algorithm. 
The matrices A, NI, N2, B, and C of the model are as 
follows: 

0.177 0.234 0.795 0.056 0.117 0.330- 
0.828 0.102 0.696 0.598 0.763 0.703 
0.158 0.219 0.753 0.227 0.526 0.143 
0.988 0.635 0.670 0.319 0.554 0.162 
0.257 0.696 0.633 0.700 0.588 0.485 - 

A, 0 0 0  '=[ 0 A d  .=[Nil 03 

N 2 = [ N l z  0 0  0] .=[:I C=[o c2l 

where 
A, =dic~g[-0.462,-0.951,-0.633,-0.439,-0.825,-0.689], 

A2=di~g[-0.7022,-0.987,-0.954,-0.851,-0.289], 

Nll = 

4 2  = 
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APPENDIX 
PROOF OFTHEOREM 1 

In what follows the proof of equation (10) will be given. 
The proof of (11) is analogues to (10). 
Let 

Fl(t) = Ie"BBreAr'l&l, 

i =2,3. ... 
To show that the P in (8) is a solution of (10). Consider 

Now by integrating between 0 and - and by assuming that 
A is stable then we have 

=-BBT- f N,.PN; 
j=l  
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