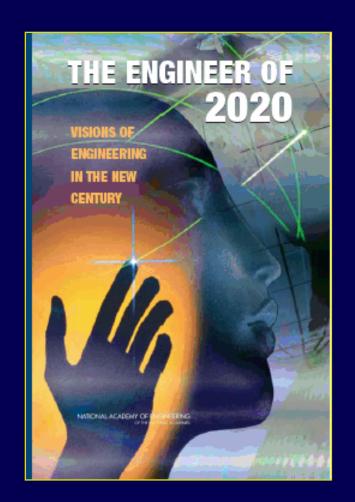
# The Engineer of 2020 Project A high-risk, high-pay-off approach for the future of U.S. engineering education

-National Academy of Engineering-

Dr. Wayne Clough
President, Georgia Institute of Technology


The American Society for Engineering Education June 13, 2005

### The premise

- Past: Engineering and engineering education were reactive, responding to change.
- ➤ Today: Rapid change signals that it is time to reverse the paradigm.
- Premise: If we anticipate the future and are proactive about changing engineering and engineering education, we can shape a significant, dynamic role for our profession.

## The process

- Phase I: Imagining the future and the challenges it will present to engineering: Woods Hole Workshop.
- Phase II: Considering how engineering education should prepare for that future: Washington DC Summit.



### **Steering Committees**

#### Phase I

- Wayne Clough, Chair, Ga Tech
- Alice Agogino, UC Berkeley
- George Campbell, Cooper Union
- James Chavez, Sandia Labs
- David Craig, Reliant Energy
- Jose Cruz, Ohio State
- Peggy Girshman, NPR
- Daniel Hastings, MIT
- Michael Heller, UC San Diego
- Deborah Johnson, U Virginia
- Alan Kay, H-P
- Tarek Khalil, U Miami
- Robert Lucky, Telcordia Technologies
- > John Mulvey, Princeton
- Sharon Nunes, IBM
- Sue Rosser, Georgia Tech
- Ernest Smerdon, U Arizona

#### Phase II

- Wayne Clough, Chair, Ga Tech
- Alice Agogino, UC Berkeley
- Mark Dean, IBM
- Deborah Grubbe, DuPont
- Randy Hinrichs, Microsoft
- > Sherra Kerns, Olin College
- Alfred Moye, H-P
- Diana Natalicio, UT at El Paso
- Siman Ostrach, Case West Res
- Ernest Smerdon, U Arizona
- Karan Watson, Texas A&M
- David Wisler, GE Aircraft Engines

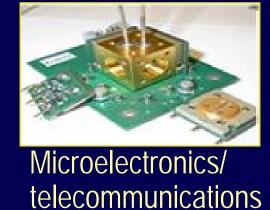
# Context for engineering



- Breakthroughs in technology
- Demographics
- Challenges
- Economic/societal forces

#### Sustainable Technology

Nanotechnology




Photonics/optics

### Breakthroughs



nanomedicine



Biotechnology/



Logistics





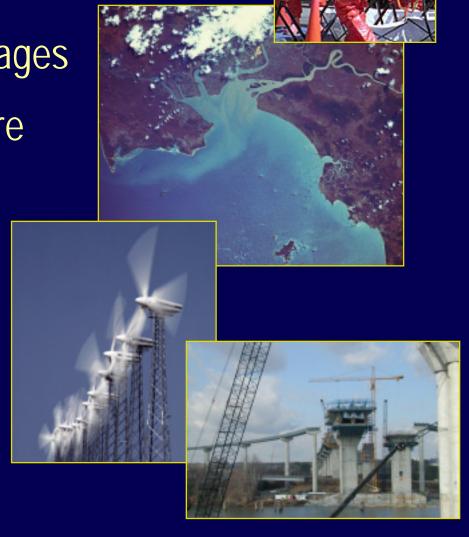
## Demographics

- > 8 billion people; a 25% increase since 2000.
- Balance tipped toward urbanization.
- Youth "bulge" in underdeveloped nations while developed nations age.
- ➤ If the world condensed to 100 people:
  - > 56 in Asia

> 7 in Eastern Europe/Russia

> 16 in Africa

> 4 in the United States


Challenges

> Fresh water shortages

> Aging infrastructure

Energy demands

- Global warming
- > New diseases
- > Security



#### Economic/societal forces

- High speed communications / Internet
- Removal of trade barriers
- Terrorist attacks; wars in Iraq, Afghanistan
- Emergence of technologybased economies in other nations
- Sustained investment in higher education in countries like China, India

# Social, global and professional context of engineering practice

- Population is more diverse.
- Social, cultural, political forces will shape and affect the success of technological innovation.
- Consumers will demand higher quality, customization.
- Growing imperative for environmental sustainability.
- Increasing focus on managing risk and assessment with view to security, privacy, and safety.

# Scenario-based planning

- Facilitated by Peter Schwartz, author of "The Art of the Long View"
- Scenarios considered:
  - > The Next Scientific Revolution
  - ► The Biotechnology Revolution in a Societal Context
  - ➤ The Natural World Interrupts the Technology
  - □ Global Conflict/Globalization

# Engineering's image

- Public that understands and appreciates the impact of engineering on socio-cultural systems.
- Public that recognizes engineering's ability to address the world's complex and changing challenges.
- Engineers will be well grounded in the humanities, social sciences, and economics as well as science and mathematics.

# Engineering without boundaries

- ➤ Embrace potentialities offered by creativity, innovation, and cross-disciplinary fertilization.
- Broaden influence on public policy and the administration of government, nonprofits, and industry.
- Recruit, nurture and welcome underrepresented groups to engineering.

# Engineering a sustainable society

- Lead the way toward wise, informed, economical, and sustainable development.
- Assist in the creating of an ethical balance in standard of living for developing and developed countries alike.

# Educating the engineer of 2020

- Reconstitute engineering curricula and related educational programs to prepare today's engineering students for the careers of the future.
- Create a well-rounded education that prepares students for positions of leadership and a creative and productive life.

# Attributes of the engineer of 2020

- Strong analytical skills
- Practical ingenuity, creativity; innovator
- Good communication skills
- Business, management skills
- High ethical standards, professionalism
- Dynamic/agile/resilient/flexible
- Lifelong learner
- Able to put problems in their socio-technical and operational context
- Adaptive leader

#### To succeed

 Attract best and brightest with a forward-looking educational experience – Phase II

Educate them to be ready:

> To implement new technology

> To focus on innovation

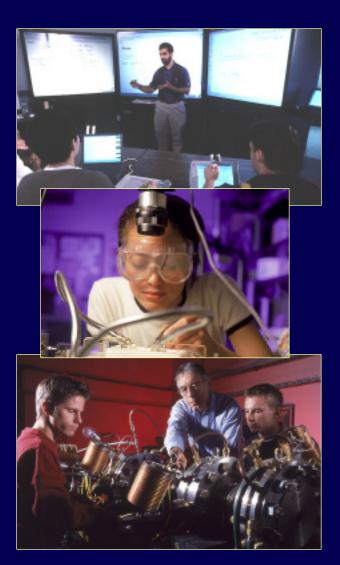
> To understand global trends



#### Thoughts from the Phase II summit

- Some needs have not changed:
  - > A sound grounding in science
  - ➤ The learning experience of great lectures
  - ▷ Studio experiences with open-ended problem solving
- Other things have really changed:
  - Access to IT creates challenge of coupling deep learning with instant gratification
  - ▶ Means and ends of using computers to bring the world to campus and enrich learning
  - ▶ Design tools and sophisticated instruments that enable students to experience the excitement of engineering

#### Thoughts from the Phase II summit


- Begin the curriculum with "grand challenges"
- > Integrate more directly with the sciences
- Provide multiple entry points to the curriculum
- Build working interdisciplinary partnerships
- Give students self-confidence early on
- Stop tinkering around the edges and shake things up

#### Thoughts from the Phase II summit

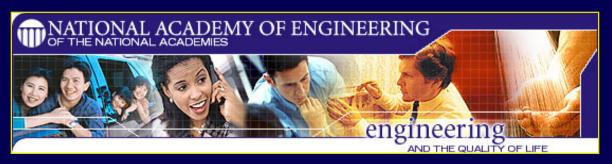
- Research/co-op experience with real problems
- > Experience with real-world tools and teams
- Encourage and recognize diversity
- Social, ethical aspects of engineering
- What students learn instead of what we want to teach
- Creative and practical thinking

# Highlights from Phase II summit

- Break out of the present mold
- > Education, not just curriculum
- Career, not just jobs
- > Multiple models, not just one
- > Leadership, not just teamwork
- More coordination with industry
- Cross-disciplinary emphasis



#### More highlights from Phase II summit

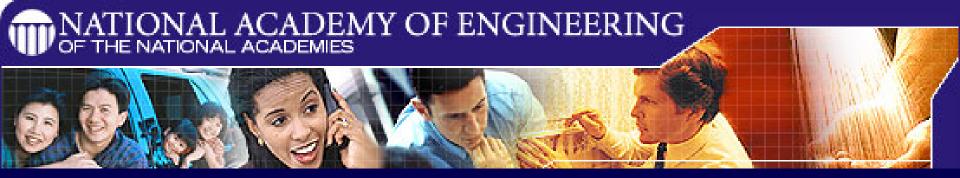

- > Emphasis on innovation
- > Systems approach
- Larger context for engineering and technology
- Non-engineering career tracks
- Global perspective
- > Market forces, macroeconomics
- Sense of urgency



#### Related Initiatives



#### National Innovation Initiative



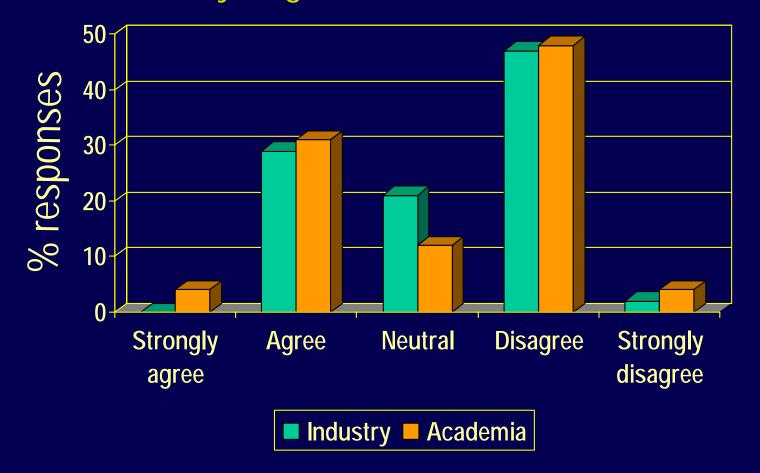

Frontiers of Engineering Survey



#### **National Innovation Initiative**

- Brought together 400 of the nation's best minds to develop a national innovation agenda.
- National summit, December 2004.
- > 30 recommendations in 3 broad areas:
  - > Talent, the human dimension of innovation.
  - ▶ Investment, the financial dimension of innovation.
  - ▶ Infrastructure, the enabling framework of innovation.
- Now proceeding with implementation phase.
- Excellent context for new economic and global realities (www.compete.org).




# Frontiers of Engineering survey

- > Frontiers of Engineering participants:
  - Selected as future leaders in engineering.
  - > Ages 30-45 (will still be active in 2020).

  - ► Have worked in field for over 10 years.
  - ► Involved in cutting-edge engineering topics.
- Intent: assess how well their education prepared them for issues they will face in practice in 2020.

#### Frontiers of Engineering

Current undergraduate engineering education is sufficiently flexible to adequately meet the needs of 21<sup>st</sup> century engineers.



# Concluding remarks

- We may have only one chance to achieve our aspirations; that time may be now.
- The momentum generated by the Engineer of 2020 Project should be used to advantage.
- Strategically engage those outside of engineering who are needed to help in our cause.
- Success is tied to innovation and marketing.
- Think as engineer/scientist, not "specialty name here" engineer.
- ➤ The future of engineering in the U.S. lies in the balance; engineering education needs to lead the charge to a time of new energy and opportunity.