

1. Which of the following sets of vectors are linearly independent?

$$
\text { a. }\left[\begin{array}{c}
4 \\
-9 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
13 \\
10
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
-4 \\
1
\end{array}\right] \quad \text { in }\left(\mathrm{R}^{3}, \mathrm{R}\right)
$$

b. $\mathrm{e}^{-\mathrm{t}}, \mathrm{te}^{-\mathrm{t}}, \mathrm{e}^{-2 \mathrm{t}}$ in (U, R), where U denotes the set of all piecewise continuous functions defined on $[0$,$) .$
c. $3 s^{2}+s-10,-2 s+3, s-5$ in $\left(R_{3}[s], R\right)$
2. Compute $e^{A t}$ for

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

3. Compute ($\mathrm{t}, 0$) for
$A=\left[\begin{array}{ll}t & 1 \\ 1 & t\end{array}\right]$
4. Problem 4.2 of Text.
5. A discrete-time LTI system with matrix $A=\left[\begin{array}{ll}1 & 2 \\ 0 & a\end{array}\right]$, with a 0 , has zero input response $x=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ at $\mathrm{k}=4$.
a) What will the state be at time $\mathrm{k}=7$
b) What was the state at time $\mathrm{k}=2$.
